Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204151437> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3204151437 endingPage "196" @default.
- W3204151437 startingPage "183" @default.
- W3204151437 abstract "Neurodegenerative diseases such as Alzheimer’s disease (AD) and dementia are gradually becoming more prevalent chronic diseases, characterized by the decline in cognitive and behavioral symptoms. Machine learning (ML) is revolutionising almost all domains of our life, including the clinical system. The application of ML has the potential to enormously augment the reach of neurodegenerative care thus building it more proficient. Throughout the globe, there is a massive burden of AD and dementia cases; which denotes an exclusive set of difficulties. This provides us with an exceptional opportunity in terms of the impending convenience of data. Harnessing this data using ML tools and techniques, can put scientists and physicians in the lead research position in this area. The objective of this study was to develop an efficient prognostic ML model with high-performance metrics to better identify female candidate subjects at risk of having AD and dementia. This paper portrays our latest contribution to the advancement in neurodegenerative disorders. The study was based on two diverse datasets. The results have been discussed employing seven performance evaluation measures i.e. accuracy, precision, recall, F-measure, Receiver Operating Characteristic area, Kappa statistic, and Root Mean Squared Error. Also, comprehensive performance analysis has been carried out later in the study. The experiment had shown a high accuracy of 98.90 for the AD recognition and 99.60 for the dementia prognosis." @default.
- W3204151437 created "2021-10-11" @default.
- W3204151437 creator A5020701507 @default.
- W3204151437 creator A5058548627 @default.
- W3204151437 creator A5066007181 @default.
- W3204151437 date "2021-01-01" @default.
- W3204151437 modified "2023-09-27" @default.
- W3204151437 title "Comprehensive Performance Analysis of Neurodegenerative disease Incidence in the Females of 60-96 year Age Group" @default.
- W3204151437 hasPublicationYear "2021" @default.
- W3204151437 type Work @default.
- W3204151437 sameAs 3204151437 @default.
- W3204151437 citedByCount "0" @default.
- W3204151437 crossrefType "proceedings-article" @default.
- W3204151437 hasAuthorship W3204151437A5020701507 @default.
- W3204151437 hasAuthorship W3204151437A5058548627 @default.
- W3204151437 hasAuthorship W3204151437A5066007181 @default.
- W3204151437 hasConcept C100660578 @default.
- W3204151437 hasConcept C105795698 @default.
- W3204151437 hasConcept C118552586 @default.
- W3204151437 hasConcept C119857082 @default.
- W3204151437 hasConcept C142724271 @default.
- W3204151437 hasConcept C154945302 @default.
- W3204151437 hasConcept C15744967 @default.
- W3204151437 hasConcept C163864269 @default.
- W3204151437 hasConcept C169900460 @default.
- W3204151437 hasConcept C177264268 @default.
- W3204151437 hasConcept C180747234 @default.
- W3204151437 hasConcept C199360897 @default.
- W3204151437 hasConcept C2779134260 @default.
- W3204151437 hasConcept C2779483572 @default.
- W3204151437 hasConcept C33923547 @default.
- W3204151437 hasConcept C41008148 @default.
- W3204151437 hasConcept C71924100 @default.
- W3204151437 hasConcept C74909509 @default.
- W3204151437 hasConcept C89128539 @default.
- W3204151437 hasConceptScore W3204151437C100660578 @default.
- W3204151437 hasConceptScore W3204151437C105795698 @default.
- W3204151437 hasConceptScore W3204151437C118552586 @default.
- W3204151437 hasConceptScore W3204151437C119857082 @default.
- W3204151437 hasConceptScore W3204151437C142724271 @default.
- W3204151437 hasConceptScore W3204151437C154945302 @default.
- W3204151437 hasConceptScore W3204151437C15744967 @default.
- W3204151437 hasConceptScore W3204151437C163864269 @default.
- W3204151437 hasConceptScore W3204151437C169900460 @default.
- W3204151437 hasConceptScore W3204151437C177264268 @default.
- W3204151437 hasConceptScore W3204151437C180747234 @default.
- W3204151437 hasConceptScore W3204151437C199360897 @default.
- W3204151437 hasConceptScore W3204151437C2779134260 @default.
- W3204151437 hasConceptScore W3204151437C2779483572 @default.
- W3204151437 hasConceptScore W3204151437C33923547 @default.
- W3204151437 hasConceptScore W3204151437C41008148 @default.
- W3204151437 hasConceptScore W3204151437C71924100 @default.
- W3204151437 hasConceptScore W3204151437C74909509 @default.
- W3204151437 hasConceptScore W3204151437C89128539 @default.
- W3204151437 hasIssue "2" @default.
- W3204151437 hasLocation W32041514371 @default.
- W3204151437 hasOpenAccess W3204151437 @default.
- W3204151437 hasPrimaryLocation W32041514371 @default.
- W3204151437 hasRelatedWork W1970902974 @default.
- W3204151437 hasRelatedWork W2340477513 @default.
- W3204151437 hasRelatedWork W2474258069 @default.
- W3204151437 hasRelatedWork W2556396800 @default.
- W3204151437 hasRelatedWork W2557782813 @default.
- W3204151437 hasRelatedWork W2753973739 @default.
- W3204151437 hasRelatedWork W2914119530 @default.
- W3204151437 hasRelatedWork W2949435021 @default.
- W3204151437 hasRelatedWork W2967935744 @default.
- W3204151437 hasRelatedWork W3013879439 @default.
- W3204151437 hasRelatedWork W3014543192 @default.
- W3204151437 hasRelatedWork W3034721525 @default.
- W3204151437 hasRelatedWork W3092077324 @default.
- W3204151437 hasRelatedWork W3100455055 @default.
- W3204151437 hasRelatedWork W3127082335 @default.
- W3204151437 hasRelatedWork W3137899421 @default.
- W3204151437 hasRelatedWork W3157467650 @default.
- W3204151437 hasRelatedWork W3162382429 @default.
- W3204151437 hasRelatedWork W3182313452 @default.
- W3204151437 hasRelatedWork W3211851834 @default.
- W3204151437 hasVolume "10" @default.
- W3204151437 isParatext "false" @default.
- W3204151437 isRetracted "false" @default.
- W3204151437 magId "3204151437" @default.
- W3204151437 workType "article" @default.