Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204162860> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3204162860 endingPage "5095" @default.
- W3204162860 startingPage "5087" @default.
- W3204162860 abstract "Along with the popularity of the Internet of Things (IoT) techniques with several computational paradigms, such as cloud and edge computing, microservice has been viewed as a promising architecture in large-scale application design and deployment. Due to the limited computing ability of edge devices in distributed IoT, only a small scale of data can be used for model training. In addition, most of the machine-learning-based intrusion detection methods are insufficient when dealing with imbalanced dataset under limited computing resources. In this article, we propose an optimized intra/inter-class-structure-based variational few-shot learning (OICS-VFSL) model to overcome a specific out-of-distribution problem in imbalanced learning, and to improve the microservice-oriented intrusion detection in distributed IoT systems. Following a newly designed VFSL framework, an intra/inter-class optimization scheme is developed using reconstructed feature embeddings, in which the intra-class distance is optimized based on the approximation during a variation Bayesian process, while the inter-class distance is optimized based on the maximization of similarities during a feature concatenation process. An intelligent intrusion detection algorithm is, then, introduced to improve the multiclass classification via a nonlinear neural network. Evaluation experiments are conducted using two public datasets to demonstrate the effectiveness of our proposed model, especially in detecting novel attacks with extremely imbalanced data, compared with four baseline methods." @default.
- W3204162860 created "2021-10-11" @default.
- W3204162860 creator A5029195037 @default.
- W3204162860 creator A5038582529 @default.
- W3204162860 creator A5055675863 @default.
- W3204162860 creator A5073441538 @default.
- W3204162860 creator A5091532881 @default.
- W3204162860 date "2022-08-01" @default.
- W3204162860 modified "2023-10-14" @default.
- W3204162860 title "Variational Few-Shot Learning for Microservice-Oriented Intrusion Detection in Distributed Industrial IoT" @default.
- W3204162860 cites W2148143831 @default.
- W3204162860 cites W2338318698 @default.
- W3204162860 cites W2604243156 @default.
- W3204162860 cites W2768346313 @default.
- W3204162860 cites W2778891141 @default.
- W3204162860 cites W2787495030 @default.
- W3204162860 cites W2800806089 @default.
- W3204162860 cites W2810502617 @default.
- W3204162860 cites W2963026732 @default.
- W3204162860 cites W2963351448 @default.
- W3204162860 cites W2982407593 @default.
- W3204162860 cites W2998908795 @default.
- W3204162860 cites W3006761813 @default.
- W3204162860 cites W3012943290 @default.
- W3204162860 cites W3033728179 @default.
- W3204162860 cites W3034942609 @default.
- W3204162860 cites W3039623901 @default.
- W3204162860 cites W3043278179 @default.
- W3204162860 cites W3084338304 @default.
- W3204162860 cites W3086419524 @default.
- W3204162860 cites W3089096050 @default.
- W3204162860 cites W3112684919 @default.
- W3204162860 cites W3120795858 @default.
- W3204162860 cites W3130357311 @default.
- W3204162860 cites W3142053066 @default.
- W3204162860 cites W3177624059 @default.
- W3204162860 doi "https://doi.org/10.1109/tii.2021.3116085" @default.
- W3204162860 hasPublicationYear "2022" @default.
- W3204162860 type Work @default.
- W3204162860 sameAs 3204162860 @default.
- W3204162860 citedByCount "51" @default.
- W3204162860 countsByYear W32041628602022 @default.
- W3204162860 countsByYear W32041628602023 @default.
- W3204162860 crossrefType "journal-article" @default.
- W3204162860 hasAuthorship W3204162860A5029195037 @default.
- W3204162860 hasAuthorship W3204162860A5038582529 @default.
- W3204162860 hasAuthorship W3204162860A5055675863 @default.
- W3204162860 hasAuthorship W3204162860A5073441538 @default.
- W3204162860 hasAuthorship W3204162860A5091532881 @default.
- W3204162860 hasBestOaLocation W32041628601 @default.
- W3204162860 hasConcept C111919701 @default.
- W3204162860 hasConcept C119857082 @default.
- W3204162860 hasConcept C124101348 @default.
- W3204162860 hasConcept C154945302 @default.
- W3204162860 hasConcept C162307627 @default.
- W3204162860 hasConcept C2778456923 @default.
- W3204162860 hasConcept C35525427 @default.
- W3204162860 hasConcept C41008148 @default.
- W3204162860 hasConcept C50644808 @default.
- W3204162860 hasConcept C79974875 @default.
- W3204162860 hasConcept C81363708 @default.
- W3204162860 hasConceptScore W3204162860C111919701 @default.
- W3204162860 hasConceptScore W3204162860C119857082 @default.
- W3204162860 hasConceptScore W3204162860C124101348 @default.
- W3204162860 hasConceptScore W3204162860C154945302 @default.
- W3204162860 hasConceptScore W3204162860C162307627 @default.
- W3204162860 hasConceptScore W3204162860C2778456923 @default.
- W3204162860 hasConceptScore W3204162860C35525427 @default.
- W3204162860 hasConceptScore W3204162860C41008148 @default.
- W3204162860 hasConceptScore W3204162860C50644808 @default.
- W3204162860 hasConceptScore W3204162860C79974875 @default.
- W3204162860 hasConceptScore W3204162860C81363708 @default.
- W3204162860 hasFunder F4320321001 @default.
- W3204162860 hasIssue "8" @default.
- W3204162860 hasLocation W32041628601 @default.
- W3204162860 hasOpenAccess W3204162860 @default.
- W3204162860 hasPrimaryLocation W32041628601 @default.
- W3204162860 hasRelatedWork W2534668683 @default.
- W3204162860 hasRelatedWork W2942586735 @default.
- W3204162860 hasRelatedWork W3021430260 @default.
- W3204162860 hasRelatedWork W3027997911 @default.
- W3204162860 hasRelatedWork W3126507566 @default.
- W3204162860 hasRelatedWork W3192562541 @default.
- W3204162860 hasRelatedWork W3211931762 @default.
- W3204162860 hasRelatedWork W4225757241 @default.
- W3204162860 hasRelatedWork W4287776258 @default.
- W3204162860 hasRelatedWork W4385414328 @default.
- W3204162860 hasVolume "18" @default.
- W3204162860 isParatext "false" @default.
- W3204162860 isRetracted "false" @default.
- W3204162860 magId "3204162860" @default.
- W3204162860 workType "article" @default.