Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204165845> ?p ?o ?g. }
- W3204165845 endingPage "1026" @default.
- W3204165845 startingPage "1016" @default.
- W3204165845 abstract "The performance in heterogeneous catalysis is an example of a complex materials function, governed by an intricate interplay of several processes (e.g., the different surface chemical reactions, and the dynamic restructuring of the catalyst material at reaction conditions). Modeling the full catalytic progression via first-principles statistical mechanics is impractical, if not impossible. Instead, we show here how a tailored artificial-intelligence approach can be applied, even to a small number of materials, to model catalysis and determine the key descriptive parameters (materials genes) reflecting the processes that trigger, facilitate, or hinder catalyst performance. We start from a consistent experimental set of clean data, containing nine vanadium-based oxidation catalysts. These materials were synthesized, fully characterized, and tested according to standardized protocols. By applying the symbolic-regression SISSO approach, we identify correlations between the few most relevant materials properties and their reactivity. This approach highlights the underlying physicochemical processes, and accelerates catalyst design.Artificial intelligence (AI) accepts that there are relationships or correlations that cannot be expressed in terms of a closed mathematical form or an easy-to-do numerical simulation. For the function of materials, for example, catalysis, AI may well capture the behavior better than the theory of the past. However, currently the flexibility of AI comes together with a lack of interpretability, and AI can only predict aspects that were included in the training. The approach proposed and demonstrated in this IMPACT article is interpretable. It combines detailed experimental data (called clean data) and symbolic regression for the identification of the key descriptive parameters (called materials genes) that are correlated with the materials function. The approach demonstrated here for the catalytic oxidation of propane will accelerate the discovery of improved or novel materials while also enhancing physical understanding.The online version contains supplementary material available at 10.1557/s43577-021-00165-6." @default.
- W3204165845 created "2021-10-11" @default.
- W3204165845 creator A5002594652 @default.
- W3204165845 creator A5009529117 @default.
- W3204165845 creator A5010271376 @default.
- W3204165845 creator A5023956685 @default.
- W3204165845 creator A5041561066 @default.
- W3204165845 creator A5049622748 @default.
- W3204165845 creator A5061251166 @default.
- W3204165845 creator A5066031848 @default.
- W3204165845 creator A5066673680 @default.
- W3204165845 creator A5067145443 @default.
- W3204165845 creator A5068604731 @default.
- W3204165845 creator A5073884807 @default.
- W3204165845 creator A5086562271 @default.
- W3204165845 date "2021-10-01" @default.
- W3204165845 modified "2023-10-14" @default.
- W3204165845 title "Materials genes of heterogeneous catalysis from clean experiments and artificial intelligence" @default.
- W3204165845 cites W1666100041 @default.
- W3204165845 cites W1979769287 @default.
- W3204165845 cites W2016366655 @default.
- W3204165845 cites W2101030423 @default.
- W3204165845 cites W2114451571 @default.
- W3204165845 cites W2119667497 @default.
- W3204165845 cites W2145096794 @default.
- W3204165845 cites W2146414738 @default.
- W3204165845 cites W2150523237 @default.
- W3204165845 cites W2164524421 @default.
- W3204165845 cites W2507975535 @default.
- W3204165845 cites W2593855134 @default.
- W3204165845 cites W2601975075 @default.
- W3204165845 cites W2734651930 @default.
- W3204165845 cites W2893275328 @default.
- W3204165845 cites W2905062539 @default.
- W3204165845 cites W2907897763 @default.
- W3204165845 cites W2943102921 @default.
- W3204165845 cites W2950801504 @default.
- W3204165845 cites W2952544883 @default.
- W3204165845 cites W2964332384 @default.
- W3204165845 cites W2970887969 @default.
- W3204165845 cites W3092413027 @default.
- W3204165845 cites W3098179186 @default.
- W3204165845 cites W3101699553 @default.
- W3204165845 cites W4211220677 @default.
- W3204165845 cites W4233087347 @default.
- W3204165845 cites W4250955649 @default.
- W3204165845 cites W566353445 @default.
- W3204165845 doi "https://doi.org/10.1557/s43577-021-00165-6" @default.
- W3204165845 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35221466" @default.
- W3204165845 hasPublicationYear "2021" @default.
- W3204165845 type Work @default.
- W3204165845 sameAs 3204165845 @default.
- W3204165845 citedByCount "25" @default.
- W3204165845 countsByYear W32041658452021 @default.
- W3204165845 countsByYear W32041658452022 @default.
- W3204165845 countsByYear W32041658452023 @default.
- W3204165845 crossrefType "journal-article" @default.
- W3204165845 hasAuthorship W3204165845A5002594652 @default.
- W3204165845 hasAuthorship W3204165845A5009529117 @default.
- W3204165845 hasAuthorship W3204165845A5010271376 @default.
- W3204165845 hasAuthorship W3204165845A5023956685 @default.
- W3204165845 hasAuthorship W3204165845A5041561066 @default.
- W3204165845 hasAuthorship W3204165845A5049622748 @default.
- W3204165845 hasAuthorship W3204165845A5061251166 @default.
- W3204165845 hasAuthorship W3204165845A5066031848 @default.
- W3204165845 hasAuthorship W3204165845A5066673680 @default.
- W3204165845 hasAuthorship W3204165845A5067145443 @default.
- W3204165845 hasAuthorship W3204165845A5068604731 @default.
- W3204165845 hasAuthorship W3204165845A5073884807 @default.
- W3204165845 hasAuthorship W3204165845A5086562271 @default.
- W3204165845 hasBestOaLocation W32041658451 @default.
- W3204165845 hasConcept C105795698 @default.
- W3204165845 hasConcept C116834253 @default.
- W3204165845 hasConcept C127413603 @default.
- W3204165845 hasConcept C14036430 @default.
- W3204165845 hasConcept C154945302 @default.
- W3204165845 hasConcept C161790260 @default.
- W3204165845 hasConcept C183696295 @default.
- W3204165845 hasConcept C185592680 @default.
- W3204165845 hasConcept C2780598303 @default.
- W3204165845 hasConcept C2781067378 @default.
- W3204165845 hasConcept C33923547 @default.
- W3204165845 hasConcept C41008148 @default.
- W3204165845 hasConcept C55493867 @default.
- W3204165845 hasConcept C59822182 @default.
- W3204165845 hasConcept C78458016 @default.
- W3204165845 hasConcept C86803240 @default.
- W3204165845 hasConceptScore W3204165845C105795698 @default.
- W3204165845 hasConceptScore W3204165845C116834253 @default.
- W3204165845 hasConceptScore W3204165845C127413603 @default.
- W3204165845 hasConceptScore W3204165845C14036430 @default.
- W3204165845 hasConceptScore W3204165845C154945302 @default.
- W3204165845 hasConceptScore W3204165845C161790260 @default.
- W3204165845 hasConceptScore W3204165845C183696295 @default.
- W3204165845 hasConceptScore W3204165845C185592680 @default.
- W3204165845 hasConceptScore W3204165845C2780598303 @default.
- W3204165845 hasConceptScore W3204165845C2781067378 @default.
- W3204165845 hasConceptScore W3204165845C33923547 @default.