Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204169119> ?p ?o ?g. }
- W3204169119 endingPage "1320" @default.
- W3204169119 startingPage "1311" @default.
- W3204169119 abstract "Coronavirus disease 2019 (COVID-19) is a major threat throughout the world. The latest advancements in the field of computational techniques based on Artificial Intelligence (AI), Machine Learning (ML) and Big Data can help in detecting, monitoring and forecasting the severity of the COVID-19 pandemic. We aim to review the detection of the COVID-19 pandemic empowered by AI, major implications, challenges and the future of smart health care at a glance. The AI plays a pioneering role in rapid and improved detection of the disease. It helps in modeling the disease activity and predicting the severity for better decision making and preparedness by healthcare authorities and policymakers. It is a promising technology for automatic and fully transparent monitoring system to track and treat the patients remotely without spreading the virus to others. The future application areas of AI-based healthcare are also identified. The role of AI in tackling the COVID-19 pandemic is reviewed in this paper. AI proves beneficial in early detection with improved results. It also provides solution for contact tracing, prediction, drug development thus reducing the workload of medical industry." @default.
- W3204169119 created "2021-10-11" @default.
- W3204169119 creator A5035974651 @default.
- W3204169119 creator A5052277241 @default.
- W3204169119 creator A5064142305 @default.
- W3204169119 creator A5084973502 @default.
- W3204169119 date "2021-09-28" @default.
- W3204169119 modified "2023-10-09" @default.
- W3204169119 title "The prospective of Artificial Intelligence in COVID-19 Pandemic" @default.
- W3204169119 cites W2026124249 @default.
- W3204169119 cites W2944812497 @default.
- W3204169119 cites W2953065444 @default.
- W3204169119 cites W2979882137 @default.
- W3204169119 cites W2980616108 @default.
- W3204169119 cites W2981731882 @default.
- W3204169119 cites W2999370168 @default.
- W3204169119 cites W3004919484 @default.
- W3204169119 cites W3007140447 @default.
- W3204169119 cites W3012054129 @default.
- W3204169119 cites W3012550011 @default.
- W3204169119 cites W3012994592 @default.
- W3204169119 cites W3013506469 @default.
- W3204169119 cites W3013547516 @default.
- W3204169119 cites W3014411350 @default.
- W3204169119 cites W3014807714 @default.
- W3204169119 cites W3017117984 @default.
- W3204169119 cites W3017231304 @default.
- W3204169119 cites W3020188044 @default.
- W3204169119 cites W3020514163 @default.
- W3204169119 cites W3022285953 @default.
- W3204169119 cites W3022872787 @default.
- W3204169119 cites W3022885394 @default.
- W3204169119 cites W3023617420 @default.
- W3204169119 cites W3023618360 @default.
- W3204169119 cites W3025352604 @default.
- W3204169119 cites W3025899282 @default.
- W3204169119 cites W3025948831 @default.
- W3204169119 cites W3026931681 @default.
- W3204169119 cites W3026951029 @default.
- W3204169119 cites W3029848232 @default.
- W3204169119 cites W3031396671 @default.
- W3204169119 cites W3034613280 @default.
- W3204169119 cites W3037163353 @default.
- W3204169119 cites W3038796705 @default.
- W3204169119 cites W3047349135 @default.
- W3204169119 cites W3087156149 @default.
- W3204169119 cites W3091940685 @default.
- W3204169119 cites W3104810384 @default.
- W3204169119 cites W3105837102 @default.
- W3204169119 cites W3109925151 @default.
- W3204169119 cites W3120438861 @default.
- W3204169119 cites W3127925841 @default.
- W3204169119 cites W3130153679 @default.
- W3204169119 cites W3184628037 @default.
- W3204169119 cites W4211012726 @default.
- W3204169119 doi "https://doi.org/10.1007/s12553-021-00601-2" @default.
- W3204169119 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8476291" @default.
- W3204169119 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34603925" @default.
- W3204169119 hasPublicationYear "2021" @default.
- W3204169119 type Work @default.
- W3204169119 sameAs 3204169119 @default.
- W3204169119 citedByCount "12" @default.
- W3204169119 countsByYear W32041691192021 @default.
- W3204169119 countsByYear W32041691192022 @default.
- W3204169119 countsByYear W32041691192023 @default.
- W3204169119 crossrefType "journal-article" @default.
- W3204169119 hasAuthorship W3204169119A5035974651 @default.
- W3204169119 hasAuthorship W3204169119A5052277241 @default.
- W3204169119 hasAuthorship W3204169119A5064142305 @default.
- W3204169119 hasAuthorship W3204169119A5084973502 @default.
- W3204169119 hasBestOaLocation W32041691191 @default.
- W3204169119 hasConcept C111919701 @default.
- W3204169119 hasConcept C112930515 @default.
- W3204169119 hasConcept C116675565 @default.
- W3204169119 hasConcept C119857082 @default.
- W3204169119 hasConcept C124101348 @default.
- W3204169119 hasConcept C142724271 @default.
- W3204169119 hasConcept C154945302 @default.
- W3204169119 hasConcept C157170001 @default.
- W3204169119 hasConcept C159047783 @default.
- W3204169119 hasConcept C160735492 @default.
- W3204169119 hasConcept C17744445 @default.
- W3204169119 hasConcept C199539241 @default.
- W3204169119 hasConcept C202444582 @default.
- W3204169119 hasConcept C2522767166 @default.
- W3204169119 hasConcept C2777042776 @default.
- W3204169119 hasConcept C2778476105 @default.
- W3204169119 hasConcept C2779134260 @default.
- W3204169119 hasConcept C3006700255 @default.
- W3204169119 hasConcept C3007834351 @default.
- W3204169119 hasConcept C3008058167 @default.
- W3204169119 hasConcept C33923547 @default.
- W3204169119 hasConcept C41008148 @default.
- W3204169119 hasConcept C524204448 @default.
- W3204169119 hasConcept C71924100 @default.
- W3204169119 hasConcept C75684735 @default.
- W3204169119 hasConcept C89623803 @default.
- W3204169119 hasConcept C9652623 @default.