Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204169305> ?p ?o ?g. }
- W3204169305 endingPage "17" @default.
- W3204169305 startingPage "1" @default.
- W3204169305 abstract "Hyperspectral image (HSI) fusion refers to the reconstruction of a high-resolution HSI by fusing a low-resolution HSI (LR-HSI) and a high-resolution multispectral image (HR-MSI) over the same scene. Recently, researchers have proposed many approaches to handle this issue. However, most of them assume that both the spatial and spectral degradation functions are known, which are often limited or unavailable in reality. This article presents a novel model-driven deep network based on matrix decomposition, which considers spectral correlations and reasonably embeds the well-known observation models. Specifically, the proposed method decomposes the desired HSI into spectral basis and coefficients. The spectral basis can be estimated from the LR-HSI via singular value decomposition. To learn the coefficients, a learning model is constructed by merging the observation models, matrix decomposition, and sparsity into a concise single formulation. For solving the proposed model, a deep framework is built by unrolling the alternating direction method of multipliers (ADMM), dubbed as ADMM-HFNet, where the involved parameters can be learned adaptively. It is worth noting that the spectral basis cannot fully represent the desired HSI. Therefore, another model is constructed here to supplement the approximation error, which can also be embedded in the deep network. After checking on three datasets, it is found that the proposed method stands out from advanced competing techniques in both quality measures and visual effects." @default.
- W3204169305 created "2021-10-11" @default.
- W3204169305 creator A5007738986 @default.
- W3204169305 creator A5018617993 @default.
- W3204169305 creator A5020302879 @default.
- W3204169305 creator A5031361250 @default.
- W3204169305 creator A5085906396 @default.
- W3204169305 date "2022-01-01" @default.
- W3204169305 modified "2023-10-17" @default.
- W3204169305 title "ADMM-HFNet: A Matrix Decomposition-Based Deep Approach for Hyperspectral Image Fusion" @default.
- W3204169305 cites W1973234061 @default.
- W3204169305 cites W1976615758 @default.
- W3204169305 cites W2011643180 @default.
- W3204169305 cites W2012946078 @default.
- W3204169305 cites W2021046129 @default.
- W3204169305 cites W2054440797 @default.
- W3204169305 cites W2100109944 @default.
- W3204169305 cites W2120273653 @default.
- W3204169305 cites W2126025632 @default.
- W3204169305 cites W2133665775 @default.
- W3204169305 cites W2159269332 @default.
- W3204169305 cites W2194775991 @default.
- W3204169305 cites W2291033752 @default.
- W3204169305 cites W2326591006 @default.
- W3204169305 cites W2327302159 @default.
- W3204169305 cites W2327364376 @default.
- W3204169305 cites W2462592242 @default.
- W3204169305 cites W2532790758 @default.
- W3204169305 cites W2552111036 @default.
- W3204169305 cites W2592312604 @default.
- W3204169305 cites W2608819578 @default.
- W3204169305 cites W2611008809 @default.
- W3204169305 cites W2740976805 @default.
- W3204169305 cites W2748530166 @default.
- W3204169305 cites W2761385227 @default.
- W3204169305 cites W2766594578 @default.
- W3204169305 cites W2773455528 @default.
- W3204169305 cites W2775207294 @default.
- W3204169305 cites W2792111852 @default.
- W3204169305 cites W2792144524 @default.
- W3204169305 cites W2795686633 @default.
- W3204169305 cites W2799929262 @default.
- W3204169305 cites W2803825432 @default.
- W3204169305 cites W2804744787 @default.
- W3204169305 cites W2895176907 @default.
- W3204169305 cites W2902719825 @default.
- W3204169305 cites W2919868964 @default.
- W3204169305 cites W2944395072 @default.
- W3204169305 cites W2952565170 @default.
- W3204169305 cites W2954661277 @default.
- W3204169305 cites W2964161477 @default.
- W3204169305 cites W2981959903 @default.
- W3204169305 cites W2989355516 @default.
- W3204169305 cites W2999036395 @default.
- W3204169305 cites W2999482976 @default.
- W3204169305 cites W3003727719 @default.
- W3204169305 cites W3007332620 @default.
- W3204169305 cites W3016296267 @default.
- W3204169305 cites W3016410830 @default.
- W3204169305 cites W3019893222 @default.
- W3204169305 cites W3035302306 @default.
- W3204169305 cites W3039186706 @default.
- W3204169305 cites W3042771795 @default.
- W3204169305 cites W3043719198 @default.
- W3204169305 cites W3044477028 @default.
- W3204169305 cites W3045851210 @default.
- W3204169305 cites W3048794210 @default.
- W3204169305 cites W3049736620 @default.
- W3204169305 cites W3100011500 @default.
- W3204169305 cites W3100730608 @default.
- W3204169305 cites W3103294617 @default.
- W3204169305 doi "https://doi.org/10.1109/tgrs.2021.3112181" @default.
- W3204169305 hasPublicationYear "2022" @default.
- W3204169305 type Work @default.
- W3204169305 sameAs 3204169305 @default.
- W3204169305 citedByCount "12" @default.
- W3204169305 countsByYear W32041693052022 @default.
- W3204169305 countsByYear W32041693052023 @default.
- W3204169305 crossrefType "journal-article" @default.
- W3204169305 hasAuthorship W3204169305A5007738986 @default.
- W3204169305 hasAuthorship W3204169305A5018617993 @default.
- W3204169305 hasAuthorship W3204169305A5020302879 @default.
- W3204169305 hasAuthorship W3204169305A5031361250 @default.
- W3204169305 hasAuthorship W3204169305A5085906396 @default.
- W3204169305 hasConcept C106487976 @default.
- W3204169305 hasConcept C108583219 @default.
- W3204169305 hasConcept C11413529 @default.
- W3204169305 hasConcept C115961682 @default.
- W3204169305 hasConcept C121332964 @default.
- W3204169305 hasConcept C12426560 @default.
- W3204169305 hasConcept C124681953 @default.
- W3204169305 hasConcept C153180895 @default.
- W3204169305 hasConcept C154945302 @default.
- W3204169305 hasConcept C158693339 @default.
- W3204169305 hasConcept C159078339 @default.
- W3204169305 hasConcept C159985019 @default.
- W3204169305 hasConcept C173163844 @default.
- W3204169305 hasConcept C18903297 @default.