Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204171449> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3204171449 endingPage "221" @default.
- W3204171449 startingPage "206" @default.
- W3204171449 abstract "This paper presents a deep Inverse Reinforcement Learning (IRL) framework that can learn an a priori unknown number of nonlinear reward functions from unlabeled experts’ demonstrations. For this purpose, we employ the tools from Dirichlet processes and propose an adaptive approach to simultaneously account for both complex and unknown number of reward functions. Using the conditional maximum entropy principle, we model the experts’ multi-intention behaviors as a mixture of latent intention distributions and derive two algorithms to estimate the parameters of the deep reward network along with the number of experts’ intentions from unlabeled demonstrations. The proposed algorithms are evaluated on three benchmarks, two of which have been specifically extended in this study for multi-intention IRL, and compared with well-known baselines. We demonstrate through several experiments the advantages of our algorithms over the existing approaches and the benefits of online inferring, rather than fixing beforehand, the number of expert’s intentions." @default.
- W3204171449 created "2021-10-11" @default.
- W3204171449 creator A5009464865 @default.
- W3204171449 creator A5014428368 @default.
- W3204171449 creator A5024010116 @default.
- W3204171449 creator A5090107566 @default.
- W3204171449 date "2021-01-01" @default.
- W3204171449 modified "2023-10-18" @default.
- W3204171449 title "Deep Adaptive Multi-intention Inverse Reinforcement Learning" @default.
- W3204171449 cites W1567876833 @default.
- W3204171449 cites W2031571562 @default.
- W3204171449 cites W2032558547 @default.
- W3204171449 cites W2109176692 @default.
- W3204171449 cites W2115870554 @default.
- W3204171449 cites W2135194391 @default.
- W3204171449 cites W2197782092 @default.
- W3204171449 cites W2516582814 @default.
- W3204171449 cites W2883109840 @default.
- W3204171449 cites W2892557643 @default.
- W3204171449 cites W2945591580 @default.
- W3204171449 cites W3131404656 @default.
- W3204171449 cites W3175760761 @default.
- W3204171449 cites W4245883374 @default.
- W3204171449 cites W52822972 @default.
- W3204171449 cites W2891189147 @default.
- W3204171449 doi "https://doi.org/10.1007/978-3-030-86486-6_13" @default.
- W3204171449 hasPublicationYear "2021" @default.
- W3204171449 type Work @default.
- W3204171449 sameAs 3204171449 @default.
- W3204171449 citedByCount "1" @default.
- W3204171449 countsByYear W32041714492022 @default.
- W3204171449 crossrefType "book-chapter" @default.
- W3204171449 hasAuthorship W3204171449A5009464865 @default.
- W3204171449 hasAuthorship W3204171449A5014428368 @default.
- W3204171449 hasAuthorship W3204171449A5024010116 @default.
- W3204171449 hasAuthorship W3204171449A5090107566 @default.
- W3204171449 hasBestOaLocation W32041714492 @default.
- W3204171449 hasConcept C106301342 @default.
- W3204171449 hasConcept C111472728 @default.
- W3204171449 hasConcept C119857082 @default.
- W3204171449 hasConcept C121332964 @default.
- W3204171449 hasConcept C134306372 @default.
- W3204171449 hasConcept C136764020 @default.
- W3204171449 hasConcept C138885662 @default.
- W3204171449 hasConcept C154945302 @default.
- W3204171449 hasConcept C169214877 @default.
- W3204171449 hasConcept C182310444 @default.
- W3204171449 hasConcept C207467116 @default.
- W3204171449 hasConcept C2524010 @default.
- W3204171449 hasConcept C2986087404 @default.
- W3204171449 hasConcept C33923547 @default.
- W3204171449 hasConcept C41008148 @default.
- W3204171449 hasConcept C62520636 @default.
- W3204171449 hasConcept C75553542 @default.
- W3204171449 hasConcept C97541855 @default.
- W3204171449 hasConceptScore W3204171449C106301342 @default.
- W3204171449 hasConceptScore W3204171449C111472728 @default.
- W3204171449 hasConceptScore W3204171449C119857082 @default.
- W3204171449 hasConceptScore W3204171449C121332964 @default.
- W3204171449 hasConceptScore W3204171449C134306372 @default.
- W3204171449 hasConceptScore W3204171449C136764020 @default.
- W3204171449 hasConceptScore W3204171449C138885662 @default.
- W3204171449 hasConceptScore W3204171449C154945302 @default.
- W3204171449 hasConceptScore W3204171449C169214877 @default.
- W3204171449 hasConceptScore W3204171449C182310444 @default.
- W3204171449 hasConceptScore W3204171449C207467116 @default.
- W3204171449 hasConceptScore W3204171449C2524010 @default.
- W3204171449 hasConceptScore W3204171449C2986087404 @default.
- W3204171449 hasConceptScore W3204171449C33923547 @default.
- W3204171449 hasConceptScore W3204171449C41008148 @default.
- W3204171449 hasConceptScore W3204171449C62520636 @default.
- W3204171449 hasConceptScore W3204171449C75553542 @default.
- W3204171449 hasConceptScore W3204171449C97541855 @default.
- W3204171449 hasLocation W32041714491 @default.
- W3204171449 hasLocation W32041714492 @default.
- W3204171449 hasLocation W32041714493 @default.
- W3204171449 hasLocation W32041714494 @default.
- W3204171449 hasLocation W32041714495 @default.
- W3204171449 hasOpenAccess W3204171449 @default.
- W3204171449 hasPrimaryLocation W32041714491 @default.
- W3204171449 hasRelatedWork W2959276766 @default.
- W3204171449 hasRelatedWork W2961085424 @default.
- W3204171449 hasRelatedWork W3005560120 @default.
- W3204171449 hasRelatedWork W3022038857 @default.
- W3204171449 hasRelatedWork W3037422413 @default.
- W3204171449 hasRelatedWork W3209094908 @default.
- W3204171449 hasRelatedWork W4206669594 @default.
- W3204171449 hasRelatedWork W4210912933 @default.
- W3204171449 hasRelatedWork W4319083788 @default.
- W3204171449 hasRelatedWork W936909164 @default.
- W3204171449 isParatext "false" @default.
- W3204171449 isRetracted "false" @default.
- W3204171449 magId "3204171449" @default.
- W3204171449 workType "book-chapter" @default.