Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204172738> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3204172738 endingPage "103968" @default.
- W3204172738 startingPage "103968" @default.
- W3204172738 abstract "Mitigation of seismic risk is a challenge for 70+ countries in the world. Screening the building stock for potential structural defects is one way to locate structures that are vulnerable to strong ground motion. Often in developing countries, masonry buildings are not reinforced or confined to withstand earthquake loads. It has been observed that such buildings cannot withstand the lateral loads imposed by an earthquake. An estimated 77 percent of the fatalities in the earthquakes during the last 100 years were caused mainly by the collapse of masonry buildings. Given the probability of severe damage or collapse in the event of an earthquake, identification and retrofit of such masonry buildings are critical. Screening of masonry buildings by conventional methods is usually a time-consuming and labor-intensive process. This research presents an automated workflow for segmenting the presence of such buildings through the use of street-view images. The method uses deep learning techniques. An inventory composed of a set of street view images was collected from the streets of Oaxaca State, Mexico using a 360° camera mounted on a car. These images were then annotated by trained engineers. Using the annotated dataset, an instance segmentation model was trained to detect and classify masonry buildings from the street view images. Using the model, we performed city scale detections of masonry buildings. We found the spatial distribution pattern of masonry buildings is correlated with the urbanization paths of the cities. The model could be used to produce large-scale automated detection of buildings at a fraction of the cost and in the fraction of the time of the alternatives. With affordable, accurate and massive screenings, governments can target these buildings for retrofit efforts and companies can assess the business opportunity of prevention (or “Building Better Before”)." @default.
- W3204172738 created "2021-10-11" @default.
- W3204172738 creator A5002374444 @default.
- W3204172738 creator A5058035393 @default.
- W3204172738 creator A5067295958 @default.
- W3204172738 date "2021-12-01" @default.
- W3204172738 modified "2023-09-27" @default.
- W3204172738 title "Automatic detection of unreinforced masonry buildings from street view images using deep learning-based image segmentation" @default.
- W3204172738 cites W1965053035 @default.
- W3204172738 cites W2003802245 @default.
- W3204172738 cites W2018419569 @default.
- W3204172738 cites W2047283189 @default.
- W3204172738 cites W2070751242 @default.
- W3204172738 cites W2076123499 @default.
- W3204172738 cites W2084484537 @default.
- W3204172738 cites W2085545217 @default.
- W3204172738 cites W2563128718 @default.
- W3204172738 cites W2762186317 @default.
- W3204172738 cites W2768955070 @default.
- W3204172738 cites W2770682124 @default.
- W3204172738 cites W2770820547 @default.
- W3204172738 cites W2792590452 @default.
- W3204172738 cites W2801492038 @default.
- W3204172738 cites W3010857226 @default.
- W3204172738 cites W3035053225 @default.
- W3204172738 cites W3036240322 @default.
- W3204172738 cites W3094353566 @default.
- W3204172738 cites W3111526209 @default.
- W3204172738 cites W3115335819 @default.
- W3204172738 doi "https://doi.org/10.1016/j.autcon.2021.103968" @default.
- W3204172738 hasPublicationYear "2021" @default.
- W3204172738 type Work @default.
- W3204172738 sameAs 3204172738 @default.
- W3204172738 citedByCount "13" @default.
- W3204172738 countsByYear W32041727382021 @default.
- W3204172738 countsByYear W32041727382022 @default.
- W3204172738 countsByYear W32041727382023 @default.
- W3204172738 crossrefType "journal-article" @default.
- W3204172738 hasAuthorship W3204172738A5002374444 @default.
- W3204172738 hasAuthorship W3204172738A5058035393 @default.
- W3204172738 hasAuthorship W3204172738A5067295958 @default.
- W3204172738 hasConcept C127413603 @default.
- W3204172738 hasConcept C147176958 @default.
- W3204172738 hasConcept C152006893 @default.
- W3204172738 hasConcept C154945302 @default.
- W3204172738 hasConcept C177212765 @default.
- W3204172738 hasConcept C41008148 @default.
- W3204172738 hasConcept C535899295 @default.
- W3204172738 hasConcept C77088390 @default.
- W3204172738 hasConcept C89600930 @default.
- W3204172738 hasConceptScore W3204172738C127413603 @default.
- W3204172738 hasConceptScore W3204172738C147176958 @default.
- W3204172738 hasConceptScore W3204172738C152006893 @default.
- W3204172738 hasConceptScore W3204172738C154945302 @default.
- W3204172738 hasConceptScore W3204172738C177212765 @default.
- W3204172738 hasConceptScore W3204172738C41008148 @default.
- W3204172738 hasConceptScore W3204172738C535899295 @default.
- W3204172738 hasConceptScore W3204172738C77088390 @default.
- W3204172738 hasConceptScore W3204172738C89600930 @default.
- W3204172738 hasLocation W32041727381 @default.
- W3204172738 hasOpenAccess W3204172738 @default.
- W3204172738 hasPrimaryLocation W32041727381 @default.
- W3204172738 hasRelatedWork W1581028752 @default.
- W3204172738 hasRelatedWork W2389430024 @default.
- W3204172738 hasRelatedWork W2518876253 @default.
- W3204172738 hasRelatedWork W2566776880 @default.
- W3204172738 hasRelatedWork W2615904055 @default.
- W3204172738 hasRelatedWork W2740470896 @default.
- W3204172738 hasRelatedWork W2899084033 @default.
- W3204172738 hasRelatedWork W2903193112 @default.
- W3204172738 hasRelatedWork W2988492635 @default.
- W3204172738 hasRelatedWork W3009829028 @default.
- W3204172738 hasVolume "132" @default.
- W3204172738 isParatext "false" @default.
- W3204172738 isRetracted "false" @default.
- W3204172738 magId "3204172738" @default.
- W3204172738 workType "article" @default.