Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204173074> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3204173074 abstract "Предложен спектральный метод на основе дробно-рациональной аппроксимации. На примере решений уравнения Бюргерса с особенностями в виде фронтов показано, что дробно-рациональное приближение решений имеет существенные преимущества перед полиномиальным. Для эффективной реализации дробно- рациональной аппроксимации в работе использована барицентрическая интерполяционная формула Лагранжа, обеспечивающая быстроту вычислений и численную устойчивость. Для адаптации узлов интерполяции использован метод, основанный на аппроксимации положения особенности аналитического продолжения решения в комплексной плоскость. Предложено обобщение метода на случай нескольких особенностей. Описано построение спектрального метода и проведены расчеты на модельных задачах, в т. ч. с двумя фронтами. A spectral method with adaptive rational approximation is proposed. In traditional spectral polynomial interpolation, the interpolation points are fixed, usually at the roots or extrema of orthogonal polynomials. Free selection of interpolation points is impossible due to the effect described in the Runge example. The key feature of rational interpolation is the free distribution of interpolation nodes without the occurrence of the Runge phenomenon. Nevertheless, in practice it is very important to implement rational approximation effectively. Here rational approximation is implemented using the barycentric Lagrange form. This leads to fast computations and numerical stability comparable with the polynomial interpolation. It is shown that rational interpolation has significant advantages over polynomial on functions that have singularities in the form of fronts. The key idea is that rational interpolation allows adapting interpolation points according to function singularities. An effective method of grid adaptation that accounts for singularity location was used. Method was generalized to the case of several singularities, for example, for solutions with several fronts. For the solutions of the Burgers equation with singularities in the form of fronts, it is shown that rational interpolation has significant advantages over polynomial. The implementation of spectral method is described, and calculations results on model problems, including problems with two fronts, are presented." @default.
- W3204173074 created "2021-10-11" @default.
- W3204173074 creator A5009240249 @default.
- W3204173074 date "2020-04-21" @default.
- W3204173074 modified "2023-09-27" @default.
- W3204173074 title "Rational approximation in initial boundary problems with the fronts" @default.
- W3204173074 doi "https://doi.org/10.25743/ict.2020.25.2.006" @default.
- W3204173074 hasPublicationYear "2020" @default.
- W3204173074 type Work @default.
- W3204173074 sameAs 3204173074 @default.
- W3204173074 citedByCount "1" @default.
- W3204173074 countsByYear W32041730742022 @default.
- W3204173074 crossrefType "journal-article" @default.
- W3204173074 hasAuthorship W3204173074A5009240249 @default.
- W3204173074 hasConcept C105795698 @default.
- W3204173074 hasConcept C121684516 @default.
- W3204173074 hasConcept C134306372 @default.
- W3204173074 hasConcept C137800194 @default.
- W3204173074 hasConcept C143542097 @default.
- W3204173074 hasConcept C171836373 @default.
- W3204173074 hasConcept C188325010 @default.
- W3204173074 hasConcept C205203396 @default.
- W3204173074 hasConcept C205280321 @default.
- W3204173074 hasConcept C207214200 @default.
- W3204173074 hasConcept C28537468 @default.
- W3204173074 hasConcept C28826006 @default.
- W3204173074 hasConcept C31447003 @default.
- W3204173074 hasConcept C33923547 @default.
- W3204173074 hasConcept C41008148 @default.
- W3204173074 hasConcept C502989409 @default.
- W3204173074 hasConcept C75190567 @default.
- W3204173074 hasConcept C88080468 @default.
- W3204173074 hasConcept C90119067 @default.
- W3204173074 hasConceptScore W3204173074C105795698 @default.
- W3204173074 hasConceptScore W3204173074C121684516 @default.
- W3204173074 hasConceptScore W3204173074C134306372 @default.
- W3204173074 hasConceptScore W3204173074C137800194 @default.
- W3204173074 hasConceptScore W3204173074C143542097 @default.
- W3204173074 hasConceptScore W3204173074C171836373 @default.
- W3204173074 hasConceptScore W3204173074C188325010 @default.
- W3204173074 hasConceptScore W3204173074C205203396 @default.
- W3204173074 hasConceptScore W3204173074C205280321 @default.
- W3204173074 hasConceptScore W3204173074C207214200 @default.
- W3204173074 hasConceptScore W3204173074C28537468 @default.
- W3204173074 hasConceptScore W3204173074C28826006 @default.
- W3204173074 hasConceptScore W3204173074C31447003 @default.
- W3204173074 hasConceptScore W3204173074C33923547 @default.
- W3204173074 hasConceptScore W3204173074C41008148 @default.
- W3204173074 hasConceptScore W3204173074C502989409 @default.
- W3204173074 hasConceptScore W3204173074C75190567 @default.
- W3204173074 hasConceptScore W3204173074C88080468 @default.
- W3204173074 hasConceptScore W3204173074C90119067 @default.
- W3204173074 hasLocation W32041730741 @default.
- W3204173074 hasOpenAccess W3204173074 @default.
- W3204173074 hasPrimaryLocation W32041730741 @default.
- W3204173074 hasRelatedWork W10740191 @default.
- W3204173074 hasRelatedWork W392537 @default.
- W3204173074 hasRelatedWork W5510077 @default.
- W3204173074 hasRelatedWork W5565507 @default.
- W3204173074 hasRelatedWork W6245317 @default.
- W3204173074 hasRelatedWork W7594253 @default.
- W3204173074 hasRelatedWork W9321584 @default.
- W3204173074 hasRelatedWork W9450076 @default.
- W3204173074 hasRelatedWork W9542647 @default.
- W3204173074 hasRelatedWork W2151891 @default.
- W3204173074 isParatext "false" @default.
- W3204173074 isRetracted "false" @default.
- W3204173074 magId "3204173074" @default.
- W3204173074 workType "article" @default.