Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204174188> ?p ?o ?g. }
- W3204174188 abstract "The first part of this dissertation defines typed algebraic theories, which are a strict subclass of the generalised algebraic theories (GATs) of Cartmell. We characterise dependently typed algebraic theories as finitary monads on certain presheaf categories, generalising a well-known result due to Lawvere, B'enabou and Linton for ordinary multisorted algebraic theories. We use this to recognise dependently typed algebraic theories for a number of classes of algebraic structures, such as small categories, n-categories, strict and weak omega-categories, planar coloured operads and opetopic sets. We then show that every locally finitely presentable category is the category of models of some dependently typed algebraic theory. Thus, with respect to their Set-models, these theories are just as expressive as GATs, essentially algebraic theories and finite limit sketches. However, dependently typed algebraic theories admit a good definition of homotopy-models in spaces, via a left Bousfield localisation of a global model structure on simplicial presheaves. Some cases, such as certain idempotent opetopic theories, have a rigidification theorem relating homotopy-models and (strict) simplicial models. The second part of this dissertation concerns localisations of presentable $(infty,1)$-categories. We give a definition of pre-modulator, and show that every accessible orthogonal factorisation system on a presentable $(infty,1)$-category can be generated from a pre-modulator by iterating a plus-construction resembling that of sheafification. We give definitions of modulator and modulator, and prove that they correspond to those factorisation systems that are modalities and left-exact modalities respectively. Thus every left-exact localisation of an $infty$-topos is obtained by iterating the plus-construction associated to a left-exact modulator." @default.
- W3204174188 created "2021-10-11" @default.
- W3204174188 creator A5065809315 @default.
- W3204174188 date "2021-09-28" @default.
- W3204174188 modified "2023-09-27" @default.
- W3204174188 title "From dependent type theory to higher algebraic structures" @default.
- W3204174188 cites W1510078069 @default.
- W3204174188 cites W1677393765 @default.
- W3204174188 cites W1936971149 @default.
- W3204174188 cites W1980610535 @default.
- W3204174188 cites W1981095894 @default.
- W3204174188 cites W1994786192 @default.
- W3204174188 cites W2006905582 @default.
- W3204174188 cites W2006941708 @default.
- W3204174188 cites W2010346873 @default.
- W3204174188 cites W2022608773 @default.
- W3204174188 cites W2024369020 @default.
- W3204174188 cites W2027905417 @default.
- W3204174188 cites W2033824108 @default.
- W3204174188 cites W2107674601 @default.
- W3204174188 cites W2107762852 @default.
- W3204174188 cites W2129064963 @default.
- W3204174188 cites W2135435825 @default.
- W3204174188 cites W2136928151 @default.
- W3204174188 cites W2137635776 @default.
- W3204174188 cites W2142494239 @default.
- W3204174188 cites W2150690980 @default.
- W3204174188 cites W2151404275 @default.
- W3204174188 cites W2151520617 @default.
- W3204174188 cites W2167529170 @default.
- W3204174188 cites W2321585800 @default.
- W3204174188 cites W2336397414 @default.
- W3204174188 cites W2472013890 @default.
- W3204174188 cites W2475129850 @default.
- W3204174188 cites W2556331506 @default.
- W3204174188 cites W2597889119 @default.
- W3204174188 cites W2801660850 @default.
- W3204174188 cites W2883252932 @default.
- W3204174188 cites W2955265923 @default.
- W3204174188 cites W2963774081 @default.
- W3204174188 cites W2999721086 @default.
- W3204174188 cites W3012917789 @default.
- W3204174188 cites W3083344096 @default.
- W3204174188 cites W3087127504 @default.
- W3204174188 cites W3100912421 @default.
- W3204174188 cites W3106009785 @default.
- W3204174188 cites W3156851928 @default.
- W3204174188 cites W3184542846 @default.
- W3204174188 cites W602280613 @default.
- W3204174188 cites W80453926 @default.
- W3204174188 hasPublicationYear "2021" @default.
- W3204174188 type Work @default.
- W3204174188 sameAs 3204174188 @default.
- W3204174188 citedByCount "0" @default.
- W3204174188 crossrefType "journal-article" @default.
- W3204174188 hasAuthorship W3204174188A5065809315 @default.
- W3204174188 hasConcept C118615104 @default.
- W3204174188 hasConcept C131359564 @default.
- W3204174188 hasConcept C134306372 @default.
- W3204174188 hasConcept C136119220 @default.
- W3204174188 hasConcept C155366967 @default.
- W3204174188 hasConcept C199793520 @default.
- W3204174188 hasConcept C202444582 @default.
- W3204174188 hasConcept C2778003309 @default.
- W3204174188 hasConcept C33923547 @default.
- W3204174188 hasConcept C5961521 @default.
- W3204174188 hasConcept C79236096 @default.
- W3204174188 hasConcept C9376300 @default.
- W3204174188 hasConceptScore W3204174188C118615104 @default.
- W3204174188 hasConceptScore W3204174188C131359564 @default.
- W3204174188 hasConceptScore W3204174188C134306372 @default.
- W3204174188 hasConceptScore W3204174188C136119220 @default.
- W3204174188 hasConceptScore W3204174188C155366967 @default.
- W3204174188 hasConceptScore W3204174188C199793520 @default.
- W3204174188 hasConceptScore W3204174188C202444582 @default.
- W3204174188 hasConceptScore W3204174188C2778003309 @default.
- W3204174188 hasConceptScore W3204174188C33923547 @default.
- W3204174188 hasConceptScore W3204174188C5961521 @default.
- W3204174188 hasConceptScore W3204174188C79236096 @default.
- W3204174188 hasConceptScore W3204174188C9376300 @default.
- W3204174188 hasLocation W32041741881 @default.
- W3204174188 hasOpenAccess W3204174188 @default.
- W3204174188 hasPrimaryLocation W32041741881 @default.
- W3204174188 hasRelatedWork W1522025572 @default.
- W3204174188 hasRelatedWork W1833301579 @default.
- W3204174188 hasRelatedWork W1947384707 @default.
- W3204174188 hasRelatedWork W1987700231 @default.
- W3204174188 hasRelatedWork W1992749094 @default.
- W3204174188 hasRelatedWork W2169251399 @default.
- W3204174188 hasRelatedWork W2181328760 @default.
- W3204174188 hasRelatedWork W2293895310 @default.
- W3204174188 hasRelatedWork W2301491978 @default.
- W3204174188 hasRelatedWork W2485037488 @default.
- W3204174188 hasRelatedWork W2591909837 @default.
- W3204174188 hasRelatedWork W2921241419 @default.
- W3204174188 hasRelatedWork W2936310910 @default.
- W3204174188 hasRelatedWork W2953612470 @default.
- W3204174188 hasRelatedWork W2962920088 @default.
- W3204174188 hasRelatedWork W3086667163 @default.
- W3204174188 hasRelatedWork W3101976357 @default.