Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204176532> ?p ?o ?g. }
- W3204176532 endingPage "32134" @default.
- W3204176532 startingPage "32126" @default.
- W3204176532 abstract "The performance of polymer electrolyte fuel cells decisively depends on the structure and processes in membrane electrode assemblies and their components, particularly the catalyst layers. The structural building blocks of catalyst layers are formed during the processing and application of catalyst inks. Accelerating the structural characterization at the ink stage is thus crucial to expedite further advances in catalyst layer design and fabrication. In this context, deep learning algorithms based on deep convolutional neural networks (ConvNets) can automate the processing of the complex and multi-scale structural features of ink imaging data. This article presents the first application of ConvNets for the high throughput screening of transmission electron microscopy images at the ink stage. Results indicate the importance of model pre-training and data augmentation that works on multiple scales in training robust and accurate classification pipelines." @default.
- W3204176532 created "2021-10-11" @default.
- W3204176532 creator A5018086348 @default.
- W3204176532 creator A5038928239 @default.
- W3204176532 creator A5054676737 @default.
- W3204176532 creator A5083848859 @default.
- W3204176532 creator A5085870953 @default.
- W3204176532 creator A5087941531 @default.
- W3204176532 date "2021-01-01" @default.
- W3204176532 modified "2023-09-27" @default.
- W3204176532 title "Convolutional neural networks for high throughput screening of catalyst layer inks for polymer electrolyte fuel cells" @default.
- W3204176532 cites W1483851170 @default.
- W3204176532 cites W1484108273 @default.
- W3204176532 cites W1966315283 @default.
- W3204176532 cites W1975134184 @default.
- W3204176532 cites W1981122307 @default.
- W3204176532 cites W1981539053 @default.
- W3204176532 cites W1984114161 @default.
- W3204176532 cites W1984768723 @default.
- W3204176532 cites W2009920378 @default.
- W3204176532 cites W2054289993 @default.
- W3204176532 cites W2058653223 @default.
- W3204176532 cites W2059756644 @default.
- W3204176532 cites W2073872893 @default.
- W3204176532 cites W2088049833 @default.
- W3204176532 cites W2141035668 @default.
- W3204176532 cites W2176950688 @default.
- W3204176532 cites W2308939317 @default.
- W3204176532 cites W2329419691 @default.
- W3204176532 cites W2354058658 @default.
- W3204176532 cites W2415625190 @default.
- W3204176532 cites W2471666589 @default.
- W3204176532 cites W2554421598 @default.
- W3204176532 cites W2583628063 @default.
- W3204176532 cites W2586072945 @default.
- W3204176532 cites W2591220433 @default.
- W3204176532 cites W2622973924 @default.
- W3204176532 cites W2733686306 @default.
- W3204176532 cites W2768848799 @default.
- W3204176532 cites W2789582757 @default.
- W3204176532 cites W2884104828 @default.
- W3204176532 cites W2912785659 @default.
- W3204176532 cites W2921963218 @default.
- W3204176532 cites W2942958755 @default.
- W3204176532 cites W2952964756 @default.
- W3204176532 cites W2965738302 @default.
- W3204176532 cites W2976427406 @default.
- W3204176532 cites W2978028852 @default.
- W3204176532 cites W2985231198 @default.
- W3204176532 cites W2987957259 @default.
- W3204176532 cites W2993647883 @default.
- W3204176532 cites W2999015643 @default.
- W3204176532 cites W3000020919 @default.
- W3204176532 cites W3007772106 @default.
- W3204176532 cites W3023846881 @default.
- W3204176532 cites W3024236153 @default.
- W3204176532 cites W3033000587 @default.
- W3204176532 cites W3042021489 @default.
- W3204176532 cites W3044667607 @default.
- W3204176532 cites W3047890352 @default.
- W3204176532 cites W3088083758 @default.
- W3204176532 cites W3091557642 @default.
- W3204176532 cites W3101485419 @default.
- W3204176532 cites W3102909511 @default.
- W3204176532 cites W3179964610 @default.
- W3204176532 cites W41427817 @default.
- W3204176532 cites W4242988692 @default.
- W3204176532 doi "https://doi.org/10.1039/d1ra05324h" @default.
- W3204176532 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35495497" @default.
- W3204176532 hasPublicationYear "2021" @default.
- W3204176532 type Work @default.
- W3204176532 sameAs 3204176532 @default.
- W3204176532 citedByCount "6" @default.
- W3204176532 countsByYear W32041765322022 @default.
- W3204176532 countsByYear W32041765322023 @default.
- W3204176532 crossrefType "journal-article" @default.
- W3204176532 hasAuthorship W3204176532A5018086348 @default.
- W3204176532 hasAuthorship W3204176532A5038928239 @default.
- W3204176532 hasAuthorship W3204176532A5054676737 @default.
- W3204176532 hasAuthorship W3204176532A5083848859 @default.
- W3204176532 hasAuthorship W3204176532A5085870953 @default.
- W3204176532 hasAuthorship W3204176532A5087941531 @default.
- W3204176532 hasBestOaLocation W32041765321 @default.
- W3204176532 hasConcept C108583219 @default.
- W3204176532 hasConcept C109693293 @default.
- W3204176532 hasConcept C136525101 @default.
- W3204176532 hasConcept C142724271 @default.
- W3204176532 hasConcept C147789679 @default.
- W3204176532 hasConcept C151730666 @default.
- W3204176532 hasConcept C154945302 @default.
- W3204176532 hasConcept C157764524 @default.
- W3204176532 hasConcept C161790260 @default.
- W3204176532 hasConcept C171250308 @default.
- W3204176532 hasConcept C17525397 @default.
- W3204176532 hasConcept C185592680 @default.
- W3204176532 hasConcept C192562407 @default.
- W3204176532 hasConcept C204787440 @default.
- W3204176532 hasConcept C2779227376 @default.