Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204177474> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3204177474 abstract "State of health of battery is crucial for electric vehicles, which has been widely studied through many different methods where incremental capacity analysis (ICA) is a common method for battery state of health estimation. However, previous methods are difficult to find suitable feature information from multiple features to make the estimation result better, especially considering that the ICA curves of different batteries have different peak numbers and positions. In this paper, in order to acquire accurate peak coordinates, the Gaussian filtering is used to make the incremental capacity (IC) curve smoother, and then the method that using multiple linear regression by particle swarm optimization (PSO) is proposed to solve the problems mentioned above. Compared with the traditional multiple linear regression, multiple linear regression by particle swarm optimization selects the most appropriate variables to improve the accuracy of estimation. In the experiment, a group of peak data of series module of battery is selected for linear regression to get the optimal variables and corresponding parameters, and then the corresponding verification is carried out by using the data of six different aging states of another series module of battery. The experimental results show that except the sixth group of the state of health estimation error is 2.09%, the estimation error of the remaining five groups is less than 2%, so this method has high accuracy and adaptability for series module of battery." @default.
- W3204177474 created "2021-10-11" @default.
- W3204177474 creator A5005347487 @default.
- W3204177474 creator A5020671839 @default.
- W3204177474 creator A5025613043 @default.
- W3204177474 creator A5043468847 @default.
- W3204177474 creator A5060117769 @default.
- W3204177474 creator A5087980335 @default.
- W3204177474 date "2021-07-26" @default.
- W3204177474 modified "2023-09-23" @default.
- W3204177474 title "Battery State of Health Estimation Based on Multiple Linear Regression by Particle Swarm Optimization" @default.
- W3204177474 cites W2026834835 @default.
- W3204177474 cites W2057772312 @default.
- W3204177474 cites W2115892257 @default.
- W3204177474 cites W2131752687 @default.
- W3204177474 cites W2325008792 @default.
- W3204177474 cites W2787934348 @default.
- W3204177474 cites W2888320614 @default.
- W3204177474 cites W2945083503 @default.
- W3204177474 cites W2954335786 @default.
- W3204177474 cites W2978449012 @default.
- W3204177474 cites W2983984543 @default.
- W3204177474 cites W2989808303 @default.
- W3204177474 cites W2994638732 @default.
- W3204177474 cites W3003356074 @default.
- W3204177474 cites W3003658253 @default.
- W3204177474 cites W3023597205 @default.
- W3204177474 cites W3042713179 @default.
- W3204177474 cites W2792492969 @default.
- W3204177474 doi "https://doi.org/10.23919/ccc52363.2021.9549690" @default.
- W3204177474 hasPublicationYear "2021" @default.
- W3204177474 type Work @default.
- W3204177474 sameAs 3204177474 @default.
- W3204177474 citedByCount "0" @default.
- W3204177474 crossrefType "proceedings-article" @default.
- W3204177474 hasAuthorship W3204177474A5005347487 @default.
- W3204177474 hasAuthorship W3204177474A5020671839 @default.
- W3204177474 hasAuthorship W3204177474A5025613043 @default.
- W3204177474 hasAuthorship W3204177474A5043468847 @default.
- W3204177474 hasAuthorship W3204177474A5060117769 @default.
- W3204177474 hasAuthorship W3204177474A5087980335 @default.
- W3204177474 hasConcept C11413529 @default.
- W3204177474 hasConcept C119857082 @default.
- W3204177474 hasConcept C121332964 @default.
- W3204177474 hasConcept C126255220 @default.
- W3204177474 hasConcept C152877465 @default.
- W3204177474 hasConcept C163175372 @default.
- W3204177474 hasConcept C163258240 @default.
- W3204177474 hasConcept C2777294910 @default.
- W3204177474 hasConcept C33923547 @default.
- W3204177474 hasConcept C41008148 @default.
- W3204177474 hasConcept C48921125 @default.
- W3204177474 hasConcept C555008776 @default.
- W3204177474 hasConcept C62520636 @default.
- W3204177474 hasConcept C85617194 @default.
- W3204177474 hasConceptScore W3204177474C11413529 @default.
- W3204177474 hasConceptScore W3204177474C119857082 @default.
- W3204177474 hasConceptScore W3204177474C121332964 @default.
- W3204177474 hasConceptScore W3204177474C126255220 @default.
- W3204177474 hasConceptScore W3204177474C152877465 @default.
- W3204177474 hasConceptScore W3204177474C163175372 @default.
- W3204177474 hasConceptScore W3204177474C163258240 @default.
- W3204177474 hasConceptScore W3204177474C2777294910 @default.
- W3204177474 hasConceptScore W3204177474C33923547 @default.
- W3204177474 hasConceptScore W3204177474C41008148 @default.
- W3204177474 hasConceptScore W3204177474C48921125 @default.
- W3204177474 hasConceptScore W3204177474C555008776 @default.
- W3204177474 hasConceptScore W3204177474C62520636 @default.
- W3204177474 hasConceptScore W3204177474C85617194 @default.
- W3204177474 hasFunder F4320321001 @default.
- W3204177474 hasFunder F4320337504 @default.
- W3204177474 hasLocation W32041774741 @default.
- W3204177474 hasOpenAccess W3204177474 @default.
- W3204177474 hasPrimaryLocation W32041774741 @default.
- W3204177474 hasRelatedWork W1915333409 @default.
- W3204177474 hasRelatedWork W2107989323 @default.
- W3204177474 hasRelatedWork W2260636366 @default.
- W3204177474 hasRelatedWork W2351731930 @default.
- W3204177474 hasRelatedWork W2359727656 @default.
- W3204177474 hasRelatedWork W2381902685 @default.
- W3204177474 hasRelatedWork W2393341384 @default.
- W3204177474 hasRelatedWork W2610868774 @default.
- W3204177474 hasRelatedWork W2892141156 @default.
- W3204177474 hasRelatedWork W4363647291 @default.
- W3204177474 isParatext "false" @default.
- W3204177474 isRetracted "false" @default.
- W3204177474 magId "3204177474" @default.
- W3204177474 workType "article" @default.