Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204179093> ?p ?o ?g. }
- W3204179093 endingPage "1810" @default.
- W3204179093 startingPage "1810" @default.
- W3204179093 abstract "There are approximately 1.8 million diagnoses of colorectal cancer, 1 million diagnoses of stomach cancer, and 0.6 million diagnoses of esophageal cancer each year globally. An automatic computer-assisted diagnostic (CAD) tool to rapidly detect colorectal and esophagogastric cancer tissue in optical images would be hugely valuable to a surgeon during an intervention. Based on a colon dataset with 12 patients and an esophagogastric dataset of 10 patients, several state-of-the-art machine learning methods have been trained to detect cancer tissue using hyperspectral imaging (HSI), including Support Vector Machines (SVM) with radial basis function kernels, Multi-Layer Perceptrons (MLP) and 3D Convolutional Neural Networks (3DCNN). A leave-one-patient-out cross-validation (LOPOCV) with and without combining these sets was performed. The ROC-AUC score of the 3DCNN was slightly higher than the MLP and SVM with a difference of 0.04 AUC. The best performance was achieved with the 3DCNN for colon cancer and esophagogastric cancer detection with a high ROC-AUC of 0.93. The 3DCNN also achieved the best DICE scores of 0.49 and 0.41 on the colon and esophagogastric datasets, respectively. These scores were significantly improved using a patient-specific decision threshold to 0.58 and 0.51, respectively. This indicates that, in practical use, an HSI-based CAD system using an interactive decision threshold is likely to be valuable. Experiments were also performed to measure the benefits of combining the colorectal and esophagogastric datasets (22 patients), and this yielded significantly better results with the MLP and SVM models." @default.
- W3204179093 created "2021-10-11" @default.
- W3204179093 creator A5001078077 @default.
- W3204179093 creator A5002074205 @default.
- W3204179093 creator A5014952217 @default.
- W3204179093 creator A5015981897 @default.
- W3204179093 creator A5023182859 @default.
- W3204179093 creator A5030498437 @default.
- W3204179093 creator A5046005567 @default.
- W3204179093 creator A5047861631 @default.
- W3204179093 creator A5048787181 @default.
- W3204179093 creator A5067876841 @default.
- W3204179093 date "2021-09-30" @default.
- W3204179093 modified "2023-10-02" @default.
- W3204179093 title "Automatic Recognition of Colon and Esophagogastric Cancer with Machine Learning and Hyperspectral Imaging" @default.
- W3204179093 cites W1521436688 @default.
- W3204179093 cites W1910077602 @default.
- W3204179093 cites W1980276147 @default.
- W3204179093 cites W2016090370 @default.
- W3204179093 cites W2036833357 @default.
- W3204179093 cites W2091563651 @default.
- W3204179093 cites W2097683070 @default.
- W3204179093 cites W2099360420 @default.
- W3204179093 cites W2104033477 @default.
- W3204179093 cites W2107003353 @default.
- W3204179093 cites W2112379671 @default.
- W3204179093 cites W2119681632 @default.
- W3204179093 cites W2147608946 @default.
- W3204179093 cites W2205594985 @default.
- W3204179093 cites W2232117950 @default.
- W3204179093 cites W2500751094 @default.
- W3204179093 cites W2506778745 @default.
- W3204179093 cites W2572303978 @default.
- W3204179093 cites W2682360066 @default.
- W3204179093 cites W2783303403 @default.
- W3204179093 cites W2793272303 @default.
- W3204179093 cites W2793848630 @default.
- W3204179093 cites W2794086280 @default.
- W3204179093 cites W2889646458 @default.
- W3204179093 cites W2905645288 @default.
- W3204179093 cites W2907172380 @default.
- W3204179093 cites W2910438869 @default.
- W3204179093 cites W2911357854 @default.
- W3204179093 cites W2918859267 @default.
- W3204179093 cites W2922170708 @default.
- W3204179093 cites W2944248482 @default.
- W3204179093 cites W2947976683 @default.
- W3204179093 cites W2949573966 @default.
- W3204179093 cites W2962409930 @default.
- W3204179093 cites W2962770389 @default.
- W3204179093 cites W2968460295 @default.
- W3204179093 cites W2973216789 @default.
- W3204179093 cites W2994660764 @default.
- W3204179093 cites W3016505311 @default.
- W3204179093 cites W3025928057 @default.
- W3204179093 cites W3036319923 @default.
- W3204179093 cites W3038033266 @default.
- W3204179093 cites W3081787612 @default.
- W3204179093 cites W3105357426 @default.
- W3204179093 cites W3133862344 @default.
- W3204179093 doi "https://doi.org/10.3390/diagnostics11101810" @default.
- W3204179093 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8535008" @default.
- W3204179093 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34679508" @default.
- W3204179093 hasPublicationYear "2021" @default.
- W3204179093 type Work @default.
- W3204179093 sameAs 3204179093 @default.
- W3204179093 citedByCount "24" @default.
- W3204179093 countsByYear W32041790932021 @default.
- W3204179093 countsByYear W32041790932022 @default.
- W3204179093 countsByYear W32041790932023 @default.
- W3204179093 crossrefType "journal-article" @default.
- W3204179093 hasAuthorship W3204179093A5001078077 @default.
- W3204179093 hasAuthorship W3204179093A5002074205 @default.
- W3204179093 hasAuthorship W3204179093A5014952217 @default.
- W3204179093 hasAuthorship W3204179093A5015981897 @default.
- W3204179093 hasAuthorship W3204179093A5023182859 @default.
- W3204179093 hasAuthorship W3204179093A5030498437 @default.
- W3204179093 hasAuthorship W3204179093A5046005567 @default.
- W3204179093 hasAuthorship W3204179093A5047861631 @default.
- W3204179093 hasAuthorship W3204179093A5048787181 @default.
- W3204179093 hasAuthorship W3204179093A5067876841 @default.
- W3204179093 hasBestOaLocation W32041790931 @default.
- W3204179093 hasConcept C121608353 @default.
- W3204179093 hasConcept C12267149 @default.
- W3204179093 hasConcept C126322002 @default.
- W3204179093 hasConcept C126838900 @default.
- W3204179093 hasConcept C153180895 @default.
- W3204179093 hasConcept C154945302 @default.
- W3204179093 hasConcept C159078339 @default.
- W3204179093 hasConcept C41008148 @default.
- W3204179093 hasConcept C50644808 @default.
- W3204179093 hasConcept C526805850 @default.
- W3204179093 hasConcept C534262118 @default.
- W3204179093 hasConcept C60908668 @default.
- W3204179093 hasConcept C71924100 @default.
- W3204179093 hasConceptScore W3204179093C121608353 @default.
- W3204179093 hasConceptScore W3204179093C12267149 @default.
- W3204179093 hasConceptScore W3204179093C126322002 @default.