Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204183477> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3204183477 abstract "Botnets have become a major threat to Internet of Things (IoT) devices due to their low security settings out of the box and the lack of security awareness from end users. Many ports are open by default and default user credentials are left unchanged. To tackle the increasingly popular botnet attack, many detection approaches have been proposed. However, most of them are targeting on one particular approach or one botnet dataset. There is lacking a comprehensive comparison between different machine learning and deep learning approaches on this task under different datasets collected from different ways. In this work, we have measured the performance of 5 machine learning and 2 deep learning based approaches on 4 recently published IoT botnet datasets collected using real and virtual IoT devices under Mirai malware attack. Our comparison results have shown that random forest achieved the best detection accuracy as well as the shortest testing time." @default.
- W3204183477 created "2021-10-11" @default.
- W3204183477 creator A5003866201 @default.
- W3204183477 creator A5043061179 @default.
- W3204183477 date "2021-08-01" @default.
- W3204183477 modified "2023-10-17" @default.
- W3204183477 title "Comparing Machine Learning and Deep Learning for IoT Botnet Detection" @default.
- W3204183477 cites W2326324325 @default.
- W3204183477 cites W2801118360 @default.
- W3204183477 cites W2888898286 @default.
- W3204183477 cites W2891639424 @default.
- W3204183477 cites W2911505293 @default.
- W3204183477 cites W2922140331 @default.
- W3204183477 cites W2963197901 @default.
- W3204183477 cites W2963471098 @default.
- W3204183477 cites W2980038013 @default.
- W3204183477 cites W2991735283 @default.
- W3204183477 cites W3010471324 @default.
- W3204183477 cites W3013100408 @default.
- W3204183477 cites W3015447130 @default.
- W3204183477 cites W3035366189 @default.
- W3204183477 cites W3043530913 @default.
- W3204183477 cites W3048529935 @default.
- W3204183477 cites W3082819946 @default.
- W3204183477 cites W3105750153 @default.
- W3204183477 cites W3122864121 @default.
- W3204183477 doi "https://doi.org/10.1109/smartcomp52413.2021.00053" @default.
- W3204183477 hasPublicationYear "2021" @default.
- W3204183477 type Work @default.
- W3204183477 sameAs 3204183477 @default.
- W3204183477 citedByCount "4" @default.
- W3204183477 countsByYear W32041834772022 @default.
- W3204183477 countsByYear W32041834772023 @default.
- W3204183477 crossrefType "proceedings-article" @default.
- W3204183477 hasAuthorship W3204183477A5003866201 @default.
- W3204183477 hasAuthorship W3204183477A5043061179 @default.
- W3204183477 hasConcept C108583219 @default.
- W3204183477 hasConcept C110875604 @default.
- W3204183477 hasConcept C119857082 @default.
- W3204183477 hasConcept C127413603 @default.
- W3204183477 hasConcept C136764020 @default.
- W3204183477 hasConcept C154945302 @default.
- W3204183477 hasConcept C169258074 @default.
- W3204183477 hasConcept C201995342 @default.
- W3204183477 hasConcept C22735295 @default.
- W3204183477 hasConcept C2780451532 @default.
- W3204183477 hasConcept C38652104 @default.
- W3204183477 hasConcept C41008148 @default.
- W3204183477 hasConcept C541664917 @default.
- W3204183477 hasConcept C81860439 @default.
- W3204183477 hasConceptScore W3204183477C108583219 @default.
- W3204183477 hasConceptScore W3204183477C110875604 @default.
- W3204183477 hasConceptScore W3204183477C119857082 @default.
- W3204183477 hasConceptScore W3204183477C127413603 @default.
- W3204183477 hasConceptScore W3204183477C136764020 @default.
- W3204183477 hasConceptScore W3204183477C154945302 @default.
- W3204183477 hasConceptScore W3204183477C169258074 @default.
- W3204183477 hasConceptScore W3204183477C201995342 @default.
- W3204183477 hasConceptScore W3204183477C22735295 @default.
- W3204183477 hasConceptScore W3204183477C2780451532 @default.
- W3204183477 hasConceptScore W3204183477C38652104 @default.
- W3204183477 hasConceptScore W3204183477C41008148 @default.
- W3204183477 hasConceptScore W3204183477C541664917 @default.
- W3204183477 hasConceptScore W3204183477C81860439 @default.
- W3204183477 hasLocation W32041834771 @default.
- W3204183477 hasOpenAccess W3204183477 @default.
- W3204183477 hasPrimaryLocation W32041834771 @default.
- W3204183477 hasRelatedWork W2942650110 @default.
- W3204183477 hasRelatedWork W2968586400 @default.
- W3204183477 hasRelatedWork W2974446506 @default.
- W3204183477 hasRelatedWork W3211546796 @default.
- W3204183477 hasRelatedWork W3211806875 @default.
- W3204183477 hasRelatedWork W4223564025 @default.
- W3204183477 hasRelatedWork W4226246648 @default.
- W3204183477 hasRelatedWork W4281616679 @default.
- W3204183477 hasRelatedWork W4316087074 @default.
- W3204183477 hasRelatedWork W4322727400 @default.
- W3204183477 isParatext "false" @default.
- W3204183477 isRetracted "false" @default.
- W3204183477 magId "3204183477" @default.
- W3204183477 workType "article" @default.