Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204185638> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3204185638 endingPage "3607" @default.
- W3204185638 startingPage "3589" @default.
- W3204185638 abstract "The automatic and accurate classification of Magnetic Resonance Imaging (MRI) radiology report is essential for the analysis and interpretation epilepsy and non-epilepsy. Since the majority of MRI radiology reports are unstructured, the manual information extraction is time-consuming and requires specific expertise. In this paper, a comprehensive method is proposed to classify epilepsy and non-epilepsy real brain MRI radiology text reports automatically. This method combines the Natural Language Processing technique and statistical Machine Learning methods. 122 real MRI radiology text reports (97 epilepsy, 25 non-epilepsy) are studied by our proposed method which consists of the following steps: (i) for a given text report our systems first cleans HTML/XML tags, tokenize, erase punctuation, normalize text, (ii) then it converts into MRI text reports numeric sequences by using index-based word encoding, (iii) then we applied the deep learning models that are uni-directional long short-term memory (LSTM) network, bidirectional long short-term memory (BiLSTM) network and convolutional neural network (CNN) for the classifying comparison of the data, (iv) finally, we used 70% of used for training, 15% for validation, and 15% for test observations. Unlike previous methods, this study encompasses the following objectives: (a) to extract significant text features from radiologic reports of epilepsy disease; (b) to ensure successful classifying accuracy performance to enhance epilepsy data attributes. Therefore, our study is a comprehensive comparative study with the epilepsy dataset obtained from numeric sequences by using index-based word encoding method applied for the deep learning models. The traditional method is numeric sequences by using index-based word encoding which has been made for the first time in the literature, is successful feature descriptor in the epilepsy data set. The BiLSTM network has shown a promising performance regarding the accuracy rates. We show that the larger sized medical text reports can be analyzed by our proposed method." @default.
- W3204185638 created "2021-10-11" @default.
- W3204185638 creator A5007732659 @default.
- W3204185638 creator A5052425319 @default.
- W3204185638 creator A5090925549 @default.
- W3204185638 date "2022-01-01" @default.
- W3204185638 modified "2023-09-26" @default.
- W3204185638 title "Epilepsy Radiology Reports Classification Using Deep Learning Networks" @default.
- W3204185638 cites W1980556818 @default.
- W3204185638 cites W2025800743 @default.
- W3204185638 cites W2050762896 @default.
- W3204185638 cites W2064332577 @default.
- W3204185638 cites W2064675550 @default.
- W3204185638 cites W2079735306 @default.
- W3204185638 cites W2116531017 @default.
- W3204185638 cites W2122888626 @default.
- W3204185638 cites W2125687380 @default.
- W3204185638 cites W2129714602 @default.
- W3204185638 cites W2180769951 @default.
- W3204185638 cites W2346265432 @default.
- W3204185638 cites W2765803301 @default.
- W3204185638 cites W2792752177 @default.
- W3204185638 cites W2885051956 @default.
- W3204185638 cites W2887066246 @default.
- W3204185638 cites W2889764698 @default.
- W3204185638 cites W2901643192 @default.
- W3204185638 cites W2909707119 @default.
- W3204185638 cites W2926691444 @default.
- W3204185638 cites W2927032858 @default.
- W3204185638 cites W2938066710 @default.
- W3204185638 cites W2946065103 @default.
- W3204185638 cites W2949479579 @default.
- W3204185638 cites W2955421790 @default.
- W3204185638 cites W2962716563 @default.
- W3204185638 cites W2980346149 @default.
- W3204185638 cites W3004088204 @default.
- W3204185638 cites W3019466234 @default.
- W3204185638 cites W3025204993 @default.
- W3204185638 cites W3096019139 @default.
- W3204185638 cites W3100777112 @default.
- W3204185638 cites W3108671495 @default.
- W3204185638 cites W3121117588 @default.
- W3204185638 cites W3137224754 @default.
- W3204185638 doi "https://doi.org/10.32604/cmc.2022.018742" @default.
- W3204185638 hasPublicationYear "2022" @default.
- W3204185638 type Work @default.
- W3204185638 sameAs 3204185638 @default.
- W3204185638 citedByCount "2" @default.
- W3204185638 countsByYear W32041856382022 @default.
- W3204185638 countsByYear W32041856382023 @default.
- W3204185638 crossrefType "journal-article" @default.
- W3204185638 hasAuthorship W3204185638A5007732659 @default.
- W3204185638 hasAuthorship W3204185638A5052425319 @default.
- W3204185638 hasAuthorship W3204185638A5090925549 @default.
- W3204185638 hasBestOaLocation W32041856381 @default.
- W3204185638 hasConcept C108583219 @default.
- W3204185638 hasConcept C118552586 @default.
- W3204185638 hasConcept C119857082 @default.
- W3204185638 hasConcept C153180895 @default.
- W3204185638 hasConcept C154945302 @default.
- W3204185638 hasConcept C204321447 @default.
- W3204185638 hasConcept C2778186239 @default.
- W3204185638 hasConcept C41008148 @default.
- W3204185638 hasConcept C50644808 @default.
- W3204185638 hasConcept C71924100 @default.
- W3204185638 hasConcept C81363708 @default.
- W3204185638 hasConceptScore W3204185638C108583219 @default.
- W3204185638 hasConceptScore W3204185638C118552586 @default.
- W3204185638 hasConceptScore W3204185638C119857082 @default.
- W3204185638 hasConceptScore W3204185638C153180895 @default.
- W3204185638 hasConceptScore W3204185638C154945302 @default.
- W3204185638 hasConceptScore W3204185638C204321447 @default.
- W3204185638 hasConceptScore W3204185638C2778186239 @default.
- W3204185638 hasConceptScore W3204185638C41008148 @default.
- W3204185638 hasConceptScore W3204185638C50644808 @default.
- W3204185638 hasConceptScore W3204185638C71924100 @default.
- W3204185638 hasConceptScore W3204185638C81363708 @default.
- W3204185638 hasIssue "2" @default.
- W3204185638 hasLocation W32041856381 @default.
- W3204185638 hasOpenAccess W3204185638 @default.
- W3204185638 hasPrimaryLocation W32041856381 @default.
- W3204185638 hasRelatedWork W2731899572 @default.
- W3204185638 hasRelatedWork W2999805992 @default.
- W3204185638 hasRelatedWork W3116150086 @default.
- W3204185638 hasRelatedWork W3133861977 @default.
- W3204185638 hasRelatedWork W4200173597 @default.
- W3204185638 hasRelatedWork W4223943233 @default.
- W3204185638 hasRelatedWork W4291897433 @default.
- W3204185638 hasRelatedWork W4312417841 @default.
- W3204185638 hasRelatedWork W4321369474 @default.
- W3204185638 hasRelatedWork W4380075502 @default.
- W3204185638 hasVolume "70" @default.
- W3204185638 isParatext "false" @default.
- W3204185638 isRetracted "false" @default.
- W3204185638 magId "3204185638" @default.
- W3204185638 workType "article" @default.