Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204187047> ?p ?o ?g. }
- W3204187047 endingPage "12301" @default.
- W3204187047 startingPage "12290" @default.
- W3204187047 abstract "Unmanned Aerial Vehicles (UAVs) have attacted much attention in the field of wireless communication due to its agility and altitude. UAVs can be used as low-altitude aerial base stations (UAV-BSs) to provide communication services for ground devices (GDs) in various scenarios, such as emergency communication and traffic offloading in hotspots. However, due to the limited communication ranges and high prices of commercial UAV-BSs, covering a target area all the time with sufficient UAVs is quite challenging, especially under dynamic environment. We need to design the trajectory of the UAV-BSs to optimize system performance. Most existing works focus on the energy-efficient coverage and throughput maximization but ignore the fairness of communication service, especially the fairness at user-level. Besides, reinforcement learning is suitable for solving decision problems in dynamic environments. However, most existing works use centralized deep reinforcement learning (DRL) approaches. Due to the scalability and low time complexity, a distributed DRL approach is more suitable for multiple UAV-BSs communication system in dynamic environment. Unlike previous works, we characterize the fairness at user-level based on proportional fairness scheduling and formulate a weighted-throughput maximization problem via designing UAV-BSs’ trajectory. Then we model the dynamic deploymentproblem of UAV-BSs as a Markov game and propose a multi-agent deep reinforcement learning-based distributed UAV-BSs control approach named MAUC. MAUC approach adopts the framework of centralized training with distributed execution. Simulation results show that the MAUC can improve fairness of communication service by sacrificing a small amount of throughput." @default.
- W3204187047 created "2021-10-11" @default.
- W3204187047 creator A5019177114 @default.
- W3204187047 creator A5021774607 @default.
- W3204187047 creator A5064462299 @default.
- W3204187047 creator A5070719868 @default.
- W3204187047 creator A5074504026 @default.
- W3204187047 creator A5080092206 @default.
- W3204187047 date "2021-12-01" @default.
- W3204187047 modified "2023-10-17" @default.
- W3204187047 title "Distributed UAV-BSs Trajectory Optimization for User-Level Fair Communication Service With Multi-Agent Deep Reinforcement Learning" @default.
- W3204187047 cites W2031834036 @default.
- W3204187047 cites W2052190282 @default.
- W3204187047 cites W2130694428 @default.
- W3204187047 cites W2149375806 @default.
- W3204187047 cites W2268751503 @default.
- W3204187047 cites W2289204537 @default.
- W3204187047 cites W2558431499 @default.
- W3204187047 cites W2604830243 @default.
- W3204187047 cites W2768220770 @default.
- W3204187047 cites W2790256744 @default.
- W3204187047 cites W2886509985 @default.
- W3204187047 cites W2889655092 @default.
- W3204187047 cites W2954390562 @default.
- W3204187047 cites W2962259706 @default.
- W3204187047 cites W2963061782 @default.
- W3204187047 cites W2963569053 @default.
- W3204187047 cites W2963615009 @default.
- W3204187047 cites W2963755519 @default.
- W3204187047 cites W2964313027 @default.
- W3204187047 cites W2969525674 @default.
- W3204187047 cites W2976140308 @default.
- W3204187047 cites W2980672541 @default.
- W3204187047 cites W3007761703 @default.
- W3204187047 cites W3013960924 @default.
- W3204187047 cites W3023161348 @default.
- W3204187047 cites W3045518003 @default.
- W3204187047 cites W3045557320 @default.
- W3204187047 cites W3048386157 @default.
- W3204187047 cites W3051352583 @default.
- W3204187047 cites W3080942332 @default.
- W3204187047 cites W3089865507 @default.
- W3204187047 cites W3092796528 @default.
- W3204187047 cites W3100789280 @default.
- W3204187047 cites W3134103048 @default.
- W3204187047 cites W4214717370 @default.
- W3204187047 doi "https://doi.org/10.1109/tvt.2021.3117792" @default.
- W3204187047 hasPublicationYear "2021" @default.
- W3204187047 type Work @default.
- W3204187047 sameAs 3204187047 @default.
- W3204187047 citedByCount "19" @default.
- W3204187047 countsByYear W32041870472022 @default.
- W3204187047 countsByYear W32041870472023 @default.
- W3204187047 crossrefType "journal-article" @default.
- W3204187047 hasAuthorship W3204187047A5019177114 @default.
- W3204187047 hasAuthorship W3204187047A5021774607 @default.
- W3204187047 hasAuthorship W3204187047A5064462299 @default.
- W3204187047 hasAuthorship W3204187047A5070719868 @default.
- W3204187047 hasAuthorship W3204187047A5074504026 @default.
- W3204187047 hasAuthorship W3204187047A5080092206 @default.
- W3204187047 hasConcept C105795698 @default.
- W3204187047 hasConcept C106189395 @default.
- W3204187047 hasConcept C120314980 @default.
- W3204187047 hasConcept C126255220 @default.
- W3204187047 hasConcept C127413603 @default.
- W3204187047 hasConcept C154945302 @default.
- W3204187047 hasConcept C157764524 @default.
- W3204187047 hasConcept C159886148 @default.
- W3204187047 hasConcept C206729178 @default.
- W3204187047 hasConcept C21547014 @default.
- W3204187047 hasConcept C2776330181 @default.
- W3204187047 hasConcept C31258907 @default.
- W3204187047 hasConcept C33923547 @default.
- W3204187047 hasConcept C41008148 @default.
- W3204187047 hasConcept C48044578 @default.
- W3204187047 hasConcept C555944384 @default.
- W3204187047 hasConcept C68649174 @default.
- W3204187047 hasConcept C76155785 @default.
- W3204187047 hasConcept C77088390 @default.
- W3204187047 hasConcept C79403827 @default.
- W3204187047 hasConcept C97541855 @default.
- W3204187047 hasConceptScore W3204187047C105795698 @default.
- W3204187047 hasConceptScore W3204187047C106189395 @default.
- W3204187047 hasConceptScore W3204187047C120314980 @default.
- W3204187047 hasConceptScore W3204187047C126255220 @default.
- W3204187047 hasConceptScore W3204187047C127413603 @default.
- W3204187047 hasConceptScore W3204187047C154945302 @default.
- W3204187047 hasConceptScore W3204187047C157764524 @default.
- W3204187047 hasConceptScore W3204187047C159886148 @default.
- W3204187047 hasConceptScore W3204187047C206729178 @default.
- W3204187047 hasConceptScore W3204187047C21547014 @default.
- W3204187047 hasConceptScore W3204187047C2776330181 @default.
- W3204187047 hasConceptScore W3204187047C31258907 @default.
- W3204187047 hasConceptScore W3204187047C33923547 @default.
- W3204187047 hasConceptScore W3204187047C41008148 @default.
- W3204187047 hasConceptScore W3204187047C48044578 @default.
- W3204187047 hasConceptScore W3204187047C555944384 @default.
- W3204187047 hasConceptScore W3204187047C68649174 @default.