Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204189870> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3204189870 endingPage "262" @default.
- W3204189870 startingPage "260" @default.
- W3204189870 abstract "We simulate motions of 2 10 5 pulsars in our Galaxy with Monte- Carlo method and try to understand the evolution of pulsar height distribution. Within about 8 Myr, pulsar height distribution can be tted by a Gaussian function with a scale height linearly increasing with time. An extra exponential function is necessary to be added to the Gaussian function to t the height distribution afterwards. The Gaussian scale height increases linearly until about 40 Myr. After about 200 Myr, the height distribution is stabilized. Based on the simulation results, we obtain the initial 1D velocity dispersion of 80 km s 1 for millisecond pulsars. Pulsar motions have been involved in population synthesis (e.g. Bhattacharya et al. 1992), but not explicitly claried. Some authors tried to deduce scale height evolution theoretically, but they had to assume a simple Galactic potential (e.g. Arnaud & Rothenug 1981) or a simplied height evolution (Narayan & Ostriker 1990). In this contribution, we explore the height evolution with Monte-Carlo simulation. The initial height distribution of pulsars is assumed to be a Gaussian with a scale height of 60 pc as that of the progenitors i.e. OB stars (Ma z-Ap ell aniz 2001). The radius distribution is assumed to follow a Gamma function (Paczy nski 1990). The nal results are insensitive to the form of initial height or radius distribution. Initial velocity is the vectorial sum of Galactic rotation velocity and kick velocity from asymmetric supernovae explosions. We assumed the kick velocities follow a Maxwellian distribution, with trial 1D velocity dispersion k =100, 200, 300 and 400 km s 1 , respectively. After comparing all the potentials available, we used the one given by Paczy nski (1990) which could reproduce the Galactic rotation curve and the local volume density near the Sun better than others. Provided these initial conditions described above, we solved the Newtonian kinetic equations using 4th order Runge-Kutta method with an adaptive step size (Press et al. 1992), then tracked all the pulsars from 0 Myr to 500 Myr. The scale heights are shown in Figure 1. Within about 8 Myr, the distribution can be tted very well by a Gaussian function with a scale height hg increasing linearly with time as hg h0 + kt. As time goes, a peak appears near the Galactic plane more and more prominently, so the distribution has to be tted by a Gaussian function plus an exponential function with a scale height he. The scale height hg keeps linear increase until about 40 Myr. After about 200 Myr, both hg and he gets stabilized. Now we try to understand the distribution of available pulsars using the simulation results. Because the height distribution is stabilized after about 200 Myr, the birth rate, if does not vary much with time, has no eects on the nal distribution. We can compare height distribution of our simulated pulsars with that of observed MSPs directly. The K-S test was employed to check the consistency of the distribution of known MSPs and the distribution from simulation with initial 1D velocity dispersion from 30 km s 1 to 180 km s 1 . Finally, we" @default.
- W3204189870 created "2021-10-11" @default.
- W3204189870 creator A5002756705 @default.
- W3204189870 creator A5090120766 @default.
- W3204189870 date "2003-02-01" @default.
- W3204189870 modified "2023-09-23" @default.
- W3204189870 title "Pulsar Motions in our Galaxy" @default.
- W3204189870 hasPublicationYear "2003" @default.
- W3204189870 type Work @default.
- W3204189870 sameAs 3204189870 @default.
- W3204189870 citedByCount "0" @default.
- W3204189870 crossrefType "journal-article" @default.
- W3204189870 hasAuthorship W3204189870A5002756705 @default.
- W3204189870 hasAuthorship W3204189870A5090120766 @default.
- W3204189870 hasConcept C105795698 @default.
- W3204189870 hasConcept C110363677 @default.
- W3204189870 hasConcept C121332964 @default.
- W3204189870 hasConcept C127529279 @default.
- W3204189870 hasConcept C1276947 @default.
- W3204189870 hasConcept C144024400 @default.
- W3204189870 hasConcept C1489048 @default.
- W3204189870 hasConcept C149923435 @default.
- W3204189870 hasConcept C178635117 @default.
- W3204189870 hasConcept C186603090 @default.
- W3204189870 hasConcept C19499675 @default.
- W3204189870 hasConcept C2908647359 @default.
- W3204189870 hasConcept C33923547 @default.
- W3204189870 hasConcept C38652104 @default.
- W3204189870 hasConcept C41008148 @default.
- W3204189870 hasConcept C44870925 @default.
- W3204189870 hasConcept C62520636 @default.
- W3204189870 hasConcept C90639681 @default.
- W3204189870 hasConcept C98444146 @default.
- W3204189870 hasConceptScore W3204189870C105795698 @default.
- W3204189870 hasConceptScore W3204189870C110363677 @default.
- W3204189870 hasConceptScore W3204189870C121332964 @default.
- W3204189870 hasConceptScore W3204189870C127529279 @default.
- W3204189870 hasConceptScore W3204189870C1276947 @default.
- W3204189870 hasConceptScore W3204189870C144024400 @default.
- W3204189870 hasConceptScore W3204189870C1489048 @default.
- W3204189870 hasConceptScore W3204189870C149923435 @default.
- W3204189870 hasConceptScore W3204189870C178635117 @default.
- W3204189870 hasConceptScore W3204189870C186603090 @default.
- W3204189870 hasConceptScore W3204189870C19499675 @default.
- W3204189870 hasConceptScore W3204189870C2908647359 @default.
- W3204189870 hasConceptScore W3204189870C33923547 @default.
- W3204189870 hasConceptScore W3204189870C38652104 @default.
- W3204189870 hasConceptScore W3204189870C41008148 @default.
- W3204189870 hasConceptScore W3204189870C44870925 @default.
- W3204189870 hasConceptScore W3204189870C62520636 @default.
- W3204189870 hasConceptScore W3204189870C90639681 @default.
- W3204189870 hasConceptScore W3204189870C98444146 @default.
- W3204189870 hasLocation W32041898701 @default.
- W3204189870 hasOpenAccess W3204189870 @default.
- W3204189870 hasPrimaryLocation W32041898701 @default.
- W3204189870 hasRelatedWork W1501708360 @default.
- W3204189870 hasRelatedWork W1992345369 @default.
- W3204189870 hasRelatedWork W2036120353 @default.
- W3204189870 hasRelatedWork W2081446345 @default.
- W3204189870 hasRelatedWork W2087274862 @default.
- W3204189870 hasRelatedWork W2125570388 @default.
- W3204189870 hasRelatedWork W2145612898 @default.
- W3204189870 hasRelatedWork W2155688845 @default.
- W3204189870 hasRelatedWork W2433598691 @default.
- W3204189870 hasRelatedWork W3005138667 @default.
- W3204189870 hasRelatedWork W3039177773 @default.
- W3204189870 hasRelatedWork W3100229054 @default.
- W3204189870 hasRelatedWork W3100752906 @default.
- W3204189870 hasRelatedWork W3101884964 @default.
- W3204189870 hasRelatedWork W3101959767 @default.
- W3204189870 hasRelatedWork W3122660218 @default.
- W3204189870 hasRelatedWork W3127326697 @default.
- W3204189870 hasRelatedWork W3143901801 @default.
- W3204189870 hasRelatedWork W2146968576 @default.
- W3204189870 hasRelatedWork W2183876542 @default.
- W3204189870 hasVolume "44" @default.
- W3204189870 isParatext "false" @default.
- W3204189870 isRetracted "false" @default.
- W3204189870 magId "3204189870" @default.
- W3204189870 workType "article" @default.