Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204197025> ?p ?o ?g. }
- W3204197025 endingPage "103973" @default.
- W3204197025 startingPage "103973" @default.
- W3204197025 abstract "Cracks undermine the structural health of transportation infrastructure. Machine vision-based surface crack analysis is to process infrastructure inspection data collected by imaging devices for identifying the presence, location, and extent of cracks, classifying the corresponding severity levels, and eventually predicting their growth. Unlike the fragmented qualitative discussions on machine vision-based crack analysis methods in existing studies, this paper reviews the state of the art and practice of various machine vision solutions under different operating conditions in a fine-grained quantitative way, systematically describing the strengths and limitations of deep learning over other solutions. Moreover, the applicability assessment is implemented to describe the deployment and optimization of deep learning in five crack analysis tasks: image classification, object detection, pixel segmentation, geometric scale quantification, and growth prediction. At last, the challenges faced and corresponding breakthrough directions are summarized, respectively, driving further development of deep learning to assist more sophisticated maintenance decisions." @default.
- W3204197025 created "2021-10-11" @default.
- W3204197025 creator A5001992062 @default.
- W3204197025 creator A5004120226 @default.
- W3204197025 creator A5008489158 @default.
- W3204197025 creator A5010706327 @default.
- W3204197025 creator A5014613205 @default.
- W3204197025 creator A5037640115 @default.
- W3204197025 creator A5046216110 @default.
- W3204197025 creator A5046732096 @default.
- W3204197025 creator A5071615222 @default.
- W3204197025 date "2021-12-01" @default.
- W3204197025 modified "2023-10-17" @default.
- W3204197025 title "Machine vision-based surface crack analysis for transportation infrastructure" @default.
- W3204197025 cites W1601369032 @default.
- W3204197025 cites W1919958626 @default.
- W3204197025 cites W2005029343 @default.
- W3204197025 cites W2019496031 @default.
- W3204197025 cites W2022844898 @default.
- W3204197025 cites W2034272359 @default.
- W3204197025 cites W2105734873 @default.
- W3204197025 cites W2110764733 @default.
- W3204197025 cites W2128880484 @default.
- W3204197025 cites W2144801789 @default.
- W3204197025 cites W2153812483 @default.
- W3204197025 cites W2278098559 @default.
- W3204197025 cites W2290482718 @default.
- W3204197025 cites W2295601184 @default.
- W3204197025 cites W2394632926 @default.
- W3204197025 cites W2407692387 @default.
- W3204197025 cites W2523358814 @default.
- W3204197025 cites W2523855815 @default.
- W3204197025 cites W2588612844 @default.
- W3204197025 cites W2598457882 @default.
- W3204197025 cites W2598804554 @default.
- W3204197025 cites W2604691965 @default.
- W3204197025 cites W2748643398 @default.
- W3204197025 cites W2757455114 @default.
- W3204197025 cites W2765854388 @default.
- W3204197025 cites W2767213246 @default.
- W3204197025 cites W2795132287 @default.
- W3204197025 cites W2796506861 @default.
- W3204197025 cites W2801439730 @default.
- W3204197025 cites W2806828180 @default.
- W3204197025 cites W2808500492 @default.
- W3204197025 cites W2814406141 @default.
- W3204197025 cites W2886369963 @default.
- W3204197025 cites W2887092226 @default.
- W3204197025 cites W2887597701 @default.
- W3204197025 cites W2888192387 @default.
- W3204197025 cites W2889494142 @default.
- W3204197025 cites W2896613037 @default.
- W3204197025 cites W2899803215 @default.
- W3204197025 cites W2904659996 @default.
- W3204197025 cites W2904718489 @default.
- W3204197025 cites W2905053868 @default.
- W3204197025 cites W2908667960 @default.
- W3204197025 cites W2909008955 @default.
- W3204197025 cites W2912350898 @default.
- W3204197025 cites W2912530595 @default.
- W3204197025 cites W2913029471 @default.
- W3204197025 cites W2918499589 @default.
- W3204197025 cites W2919816425 @default.
- W3204197025 cites W2920633487 @default.
- W3204197025 cites W2922073063 @default.
- W3204197025 cites W2922996042 @default.
- W3204197025 cites W2930144517 @default.
- W3204197025 cites W2935452778 @default.
- W3204197025 cites W2944441395 @default.
- W3204197025 cites W2945689285 @default.
- W3204197025 cites W2956776634 @default.
- W3204197025 cites W2963372888 @default.
- W3204197025 cites W2963908722 @default.
- W3204197025 cites W2964308596 @default.
- W3204197025 cites W2966500264 @default.
- W3204197025 cites W2971843891 @default.
- W3204197025 cites W2972963019 @default.
- W3204197025 cites W2973007446 @default.
- W3204197025 cites W2978183057 @default.
- W3204197025 cites W2981340875 @default.
- W3204197025 cites W2981493332 @default.
- W3204197025 cites W2982564821 @default.
- W3204197025 cites W2983902176 @default.
- W3204197025 cites W2996355855 @default.
- W3204197025 cites W2996816682 @default.
- W3204197025 cites W2997814214 @default.
- W3204197025 cites W2998997213 @default.
- W3204197025 cites W3000110218 @default.
- W3204197025 cites W3001104520 @default.
- W3204197025 cites W3002057796 @default.
- W3204197025 cites W3003071623 @default.
- W3204197025 cites W3004052770 @default.
- W3204197025 cites W3005498204 @default.
- W3204197025 cites W3008692649 @default.
- W3204197025 cites W3009245829 @default.
- W3204197025 cites W3010717703 @default.
- W3204197025 cites W3011076052 @default.
- W3204197025 cites W3014583121 @default.