Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204198145> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3204198145 abstract "Statistic modeling and data-driven learning are the two vital fields that attract many attentions. Statistic models intend to capture and interpret the relationships among variables, while data-based learning attempt to extract information directly from the data without pre-processing through complex models. Given the extensive studies in both fields, a subtle issue is how to properly integrate data based methods with existing knowledge or models. In this paper, based on the time series data, we propose two different directions to integrate the two, a decomposition-based method and a method exploiting the statistic extraction of data features. The first one decomposes the data into linear stable, nonlinear stable and unstable parts, where suitable statistical models are used for the linear stable and nonlinear stable parts while the appropriate machine learning tools are used for the unstable parts. The second one applies statistic models to extract statistics features of data and feed them as additional inputs into the machine learning platform for training. The most critical and challenging thing is how to determine and extract the valuable information from mathematical or statistical models to boost the performance of machine learning algorithms. We evaluate the proposal using time series data with varying degrees of stability. Performance results show that both methods can outperform existing schemes that use models and learning separately, and the improvements can be over 60%. Both our proposed methods are promising in bridging the gap between model-based and data-driven schemes and integrating the two to provide an overall higher learning performance." @default.
- W3204198145 created "2021-10-11" @default.
- W3204198145 creator A5061838242 @default.
- W3204198145 date "2021-09-30" @default.
- W3204198145 modified "2023-09-24" @default.
- W3204198145 title "Two ways towards combining Sequential Neural Network and Statistical Methods to Improve the Prediction of Time Series" @default.
- W3204198145 cites W1969852690 @default.
- W3204198145 cites W2108675195 @default.
- W3204198145 cites W2470292068 @default.
- W3204198145 cites W2602977295 @default.
- W3204198145 cites W2627025399 @default.
- W3204198145 cites W2774551159 @default.
- W3204198145 cites W2796130100 @default.
- W3204198145 cites W2798056406 @default.
- W3204198145 cites W2804379028 @default.
- W3204198145 cites W2820191439 @default.
- W3204198145 cites W2894821558 @default.
- W3204198145 cites W2971724044 @default.
- W3204198145 cites W2978956171 @default.
- W3204198145 cites W2984376566 @default.
- W3204198145 cites W3016625403 @default.
- W3204198145 cites W3040211378 @default.
- W3204198145 cites W406650945 @default.
- W3204198145 cites W76127718 @default.
- W3204198145 doi "https://doi.org/10.48550/arxiv.2110.00082" @default.
- W3204198145 hasPublicationYear "2021" @default.
- W3204198145 type Work @default.
- W3204198145 sameAs 3204198145 @default.
- W3204198145 citedByCount "0" @default.
- W3204198145 crossrefType "posted-content" @default.
- W3204198145 hasAuthorship W3204198145A5061838242 @default.
- W3204198145 hasBestOaLocation W32041981451 @default.
- W3204198145 hasConcept C105795698 @default.
- W3204198145 hasConcept C112972136 @default.
- W3204198145 hasConcept C114289077 @default.
- W3204198145 hasConcept C119857082 @default.
- W3204198145 hasConcept C121332964 @default.
- W3204198145 hasConcept C124101348 @default.
- W3204198145 hasConcept C143724316 @default.
- W3204198145 hasConcept C151406439 @default.
- W3204198145 hasConcept C151730666 @default.
- W3204198145 hasConcept C154945302 @default.
- W3204198145 hasConcept C158622935 @default.
- W3204198145 hasConcept C33923547 @default.
- W3204198145 hasConcept C41008148 @default.
- W3204198145 hasConcept C50644808 @default.
- W3204198145 hasConcept C62520636 @default.
- W3204198145 hasConcept C86803240 @default.
- W3204198145 hasConcept C89128539 @default.
- W3204198145 hasConceptScore W3204198145C105795698 @default.
- W3204198145 hasConceptScore W3204198145C112972136 @default.
- W3204198145 hasConceptScore W3204198145C114289077 @default.
- W3204198145 hasConceptScore W3204198145C119857082 @default.
- W3204198145 hasConceptScore W3204198145C121332964 @default.
- W3204198145 hasConceptScore W3204198145C124101348 @default.
- W3204198145 hasConceptScore W3204198145C143724316 @default.
- W3204198145 hasConceptScore W3204198145C151406439 @default.
- W3204198145 hasConceptScore W3204198145C151730666 @default.
- W3204198145 hasConceptScore W3204198145C154945302 @default.
- W3204198145 hasConceptScore W3204198145C158622935 @default.
- W3204198145 hasConceptScore W3204198145C33923547 @default.
- W3204198145 hasConceptScore W3204198145C41008148 @default.
- W3204198145 hasConceptScore W3204198145C50644808 @default.
- W3204198145 hasConceptScore W3204198145C62520636 @default.
- W3204198145 hasConceptScore W3204198145C86803240 @default.
- W3204198145 hasConceptScore W3204198145C89128539 @default.
- W3204198145 hasLocation W32041981451 @default.
- W3204198145 hasLocation W32041981452 @default.
- W3204198145 hasOpenAccess W3204198145 @default.
- W3204198145 hasPrimaryLocation W32041981451 @default.
- W3204198145 hasRelatedWork W2080650820 @default.
- W3204198145 hasRelatedWork W2150798635 @default.
- W3204198145 hasRelatedWork W2242271381 @default.
- W3204198145 hasRelatedWork W2357809648 @default.
- W3204198145 hasRelatedWork W2378555542 @default.
- W3204198145 hasRelatedWork W2379249492 @default.
- W3204198145 hasRelatedWork W2381421930 @default.
- W3204198145 hasRelatedWork W2990514669 @default.
- W3204198145 hasRelatedWork W572854416 @default.
- W3204198145 hasRelatedWork W2393723963 @default.
- W3204198145 isParatext "false" @default.
- W3204198145 isRetracted "false" @default.
- W3204198145 magId "3204198145" @default.
- W3204198145 workType "article" @default.