Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204198354> ?p ?o ?g. }
- W3204198354 endingPage "100070" @default.
- W3204198354 startingPage "100070" @default.
- W3204198354 abstract "In this study, the potential and efficacy of adapting the bioinspired Manta ray foraging optimization algorithm (MRFO) as a tool for estimating model parameters of two-dimensional gravity profile anomalies is presented. The process of implementing the MRFO algorithm for accurate estimation of shape/depth defining parameters over geometric geologic structures was assessed. The experimental data comprised synthetically generated gravity anomalies that were later corrupted with white Gaussian noise at levels of 5, 10, and 15%, and then, case examples were taken from mining sites across different parts of the world. The algorithm was found to be fast, stable, and consistent in its search for the global best solution to each of the geophysical inverse problems. Its performance was excellent when confronted with constrained multi-parameter non-linear inversion problems and exhibited admirable stability even in the presence of noise. The consistency of the estimated results, when compared to actual values, affirmed the reliability of the procedure. It is, therefore, a stable and efficient tool for performing geophysical data inversion and is recommended for use in inverting geophysical data with higher complexities like seismic reflection, self-potential and magnetic data, which require many corrections to be performed before reliable geological interpretations can be made." @default.
- W3204198354 created "2021-10-11" @default.
- W3204198354 creator A5027793976 @default.
- W3204198354 creator A5038056885 @default.
- W3204198354 creator A5072175362 @default.
- W3204198354 creator A5082724502 @default.
- W3204198354 date "2021-12-01" @default.
- W3204198354 modified "2023-09-27" @default.
- W3204198354 title "Novel technique for the interpretation of gravity anomalies over geologic structures with idealized geometries using the Manta ray foraging optimization" @default.
- W3204198354 cites W1273027449 @default.
- W3204198354 cites W1845690909 @default.
- W3204198354 cites W1966441209 @default.
- W3204198354 cites W1969670211 @default.
- W3204198354 cites W1974456865 @default.
- W3204198354 cites W1976313829 @default.
- W3204198354 cites W1982605079 @default.
- W3204198354 cites W1983229312 @default.
- W3204198354 cites W1988689409 @default.
- W3204198354 cites W2003253075 @default.
- W3204198354 cites W2017894240 @default.
- W3204198354 cites W2025407570 @default.
- W3204198354 cites W2028670325 @default.
- W3204198354 cites W2035125837 @default.
- W3204198354 cites W2052634769 @default.
- W3204198354 cites W2054174823 @default.
- W3204198354 cites W2057050670 @default.
- W3204198354 cites W2066561410 @default.
- W3204198354 cites W2067659232 @default.
- W3204198354 cites W2068303383 @default.
- W3204198354 cites W2073565656 @default.
- W3204198354 cites W2080885600 @default.
- W3204198354 cites W2081460685 @default.
- W3204198354 cites W2082838047 @default.
- W3204198354 cites W2086227886 @default.
- W3204198354 cites W2088615746 @default.
- W3204198354 cites W2088951140 @default.
- W3204198354 cites W2092148005 @default.
- W3204198354 cites W2098751659 @default.
- W3204198354 cites W2102842142 @default.
- W3204198354 cites W2110398209 @default.
- W3204198354 cites W2115226962 @default.
- W3204198354 cites W2116653773 @default.
- W3204198354 cites W2125366593 @default.
- W3204198354 cites W2133285135 @default.
- W3204198354 cites W2142432520 @default.
- W3204198354 cites W2150158729 @default.
- W3204198354 cites W2151972539 @default.
- W3204198354 cites W2158713092 @default.
- W3204198354 cites W2160914980 @default.
- W3204198354 cites W2164698123 @default.
- W3204198354 cites W2164894805 @default.
- W3204198354 cites W2165795570 @default.
- W3204198354 cites W2174096823 @default.
- W3204198354 cites W2276637828 @default.
- W3204198354 cites W2288940029 @default.
- W3204198354 cites W2295157699 @default.
- W3204198354 cites W2341015382 @default.
- W3204198354 cites W2508513255 @default.
- W3204198354 cites W2549706810 @default.
- W3204198354 cites W2587051085 @default.
- W3204198354 cites W2734407467 @default.
- W3204198354 cites W2736678282 @default.
- W3204198354 cites W2782513934 @default.
- W3204198354 cites W2799581641 @default.
- W3204198354 cites W2808000866 @default.
- W3204198354 cites W2887234807 @default.
- W3204198354 cites W2889718519 @default.
- W3204198354 cites W2913379770 @default.
- W3204198354 cites W2922096023 @default.
- W3204198354 cites W2944541923 @default.
- W3204198354 cites W2958374337 @default.
- W3204198354 cites W2980570898 @default.
- W3204198354 cites W2981012813 @default.
- W3204198354 cites W2982453621 @default.
- W3204198354 cites W2997328185 @default.
- W3204198354 cites W2999146216 @default.
- W3204198354 cites W3034718230 @default.
- W3204198354 cites W3037564114 @default.
- W3204198354 cites W3038003980 @default.
- W3204198354 cites W3048364450 @default.
- W3204198354 cites W3048782836 @default.
- W3204198354 cites W3087833214 @default.
- W3204198354 cites W3108346862 @default.
- W3204198354 cites W3111627432 @default.
- W3204198354 cites W3132135941 @default.
- W3204198354 cites W3158083714 @default.
- W3204198354 cites W3179861248 @default.
- W3204198354 cites W3192477487 @default.
- W3204198354 cites W3193340073 @default.
- W3204198354 cites W4231058023 @default.
- W3204198354 cites W4243913461 @default.
- W3204198354 cites W928222412 @default.
- W3204198354 cites W2145546026 @default.
- W3204198354 doi "https://doi.org/10.1016/j.jaesx.2021.100070" @default.
- W3204198354 hasPublicationYear "2021" @default.
- W3204198354 type Work @default.
- W3204198354 sameAs 3204198354 @default.
- W3204198354 citedByCount "10" @default.