Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204222067> ?p ?o ?g. }
- W3204222067 endingPage "3777" @default.
- W3204222067 startingPage "3777" @default.
- W3204222067 abstract "Tropical forests are a key component of the global carbon cycle and climate change mitigation. Field- or LiDAR-based approaches enable reliable measurements of the structure and above-ground biomass (AGB) of tropical forests. Data derived from digital aerial photogrammetry (DAP) on the unmanned aerial vehicle (UAV) platform offer several advantages over field- and LiDAR-based approaches in terms of scale and efficiency, and DAP has been presented as a viable and economical alternative in boreal or deciduous forests. However, detecting with DAP the ground in dense tropical forests, which is required for the estimation of canopy height, is currently considered highly challenging. To address this issue, we present a generally applicable method that is based on machine learning methods to identify the forest floor in DAP-derived point clouds of dense tropical forests. We capitalize on the DAP-derived high-resolution vertical forest structure to inform ground detection. We conducted UAV-DAP surveys combined with field inventories in the tropical forest of the Congo Basin. Using airborne LiDAR (ALS) for ground truthing, we present a canopy height model (CHM) generation workflow that constitutes the detection, classification and interpolation of ground points using a combination of local minima filters, supervised machine learning algorithms and TIN densification for classifying ground points using spectral and geometrical features from the UAV-based 3D data. We demonstrate that our DAP-based method provides estimates of tree heights that are identical to LiDAR-based approaches (conservatively estimated NSE = 0.88, RMSE = 1.6 m). An external validation shows that our method is capable of providing accurate and precise estimates of tree heights and AGB in dense tropical forests (DAP vs. field inventories of old forest: r2 = 0.913, RMSE = 31.93 Mg ha−1). Overall, this study demonstrates that the application of cheap and easily deployable UAV-DAP platforms can be deployed without expert knowledge to generate biophysical information and advance the study and monitoring of dense tropical forests." @default.
- W3204222067 created "2021-10-11" @default.
- W3204222067 creator A5000994912 @default.
- W3204222067 creator A5012160633 @default.
- W3204222067 creator A5045899310 @default.
- W3204222067 creator A5064323494 @default.
- W3204222067 date "2021-09-20" @default.
- W3204222067 modified "2023-10-16" @default.
- W3204222067 title "Mapping Canopy Heights in Dense Tropical Forests Using Low-Cost UAV-Derived Photogrammetric Point Clouds and Machine Learning Approaches" @default.
- W3204222067 cites W1522525389 @default.
- W3204222067 cites W1527561456 @default.
- W3204222067 cites W1822357580 @default.
- W3204222067 cites W1932721871 @default.
- W3204222067 cites W1964403399 @default.
- W3204222067 cites W1969136216 @default.
- W3204222067 cites W1972640610 @default.
- W3204222067 cites W1997732436 @default.
- W3204222067 cites W2043442349 @default.
- W3204222067 cites W2050648603 @default.
- W3204222067 cites W2056019490 @default.
- W3204222067 cites W2071200446 @default.
- W3204222067 cites W2087674734 @default.
- W3204222067 cites W2121748258 @default.
- W3204222067 cites W2133613984 @default.
- W3204222067 cites W2140397648 @default.
- W3204222067 cites W2147886550 @default.
- W3204222067 cites W2152269371 @default.
- W3204222067 cites W2155632266 @default.
- W3204222067 cites W2296685749 @default.
- W3204222067 cites W2315994349 @default.
- W3204222067 cites W2322716129 @default.
- W3204222067 cites W2337442676 @default.
- W3204222067 cites W2436494909 @default.
- W3204222067 cites W2500871401 @default.
- W3204222067 cites W2549123380 @default.
- W3204222067 cites W2572696731 @default.
- W3204222067 cites W2582323655 @default.
- W3204222067 cites W2766045420 @default.
- W3204222067 cites W2770138631 @default.
- W3204222067 cites W2782301291 @default.
- W3204222067 cites W2787760587 @default.
- W3204222067 cites W2790611503 @default.
- W3204222067 cites W2791554042 @default.
- W3204222067 cites W2804625175 @default.
- W3204222067 cites W2891260110 @default.
- W3204222067 cites W2907402618 @default.
- W3204222067 cites W2914433259 @default.
- W3204222067 cites W2948027403 @default.
- W3204222067 cites W2955077228 @default.
- W3204222067 cites W2957974561 @default.
- W3204222067 cites W2971714605 @default.
- W3204222067 cites W3023335109 @default.
- W3204222067 cites W3030311890 @default.
- W3204222067 cites W3047190055 @default.
- W3204222067 cites W3093252501 @default.
- W3204222067 cites W3094643344 @default.
- W3204222067 cites W3112701832 @default.
- W3204222067 cites W3154595010 @default.
- W3204222067 doi "https://doi.org/10.3390/rs13183777" @default.
- W3204222067 hasPublicationYear "2021" @default.
- W3204222067 type Work @default.
- W3204222067 sameAs 3204222067 @default.
- W3204222067 citedByCount "9" @default.
- W3204222067 countsByYear W32042220672022 @default.
- W3204222067 countsByYear W32042220672023 @default.
- W3204222067 crossrefType "journal-article" @default.
- W3204222067 hasAuthorship W3204222067A5000994912 @default.
- W3204222067 hasAuthorship W3204222067A5012160633 @default.
- W3204222067 hasAuthorship W3204222067A5045899310 @default.
- W3204222067 hasAuthorship W3204222067A5064323494 @default.
- W3204222067 hasBestOaLocation W32042220671 @default.
- W3204222067 hasConcept C101000010 @default.
- W3204222067 hasConcept C117455697 @default.
- W3204222067 hasConcept C131979681 @default.
- W3204222067 hasConcept C154945302 @default.
- W3204222067 hasConcept C166957645 @default.
- W3204222067 hasConcept C205649164 @default.
- W3204222067 hasConcept C39432304 @default.
- W3204222067 hasConcept C39807119 @default.
- W3204222067 hasConcept C41008148 @default.
- W3204222067 hasConcept C51399673 @default.
- W3204222067 hasConcept C62649853 @default.
- W3204222067 hasConceptScore W3204222067C101000010 @default.
- W3204222067 hasConceptScore W3204222067C117455697 @default.
- W3204222067 hasConceptScore W3204222067C131979681 @default.
- W3204222067 hasConceptScore W3204222067C154945302 @default.
- W3204222067 hasConceptScore W3204222067C166957645 @default.
- W3204222067 hasConceptScore W3204222067C205649164 @default.
- W3204222067 hasConceptScore W3204222067C39432304 @default.
- W3204222067 hasConceptScore W3204222067C39807119 @default.
- W3204222067 hasConceptScore W3204222067C41008148 @default.
- W3204222067 hasConceptScore W3204222067C51399673 @default.
- W3204222067 hasConceptScore W3204222067C62649853 @default.
- W3204222067 hasFunder F4320321390 @default.
- W3204222067 hasFunder F4320322725 @default.
- W3204222067 hasIssue "18" @default.
- W3204222067 hasLocation W32042220671 @default.
- W3204222067 hasLocation W32042220672 @default.