Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204227543> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3204227543 abstract "Nowadays, the parallel processing of power-law graphs is one of the biggest challenges in the field of graph computation. The subgraph-centric programming model is a promising approach and has been applied in many state-of-the-art distributed graph computing frameworks. The graph partition algorithm plays an important role in the overall performance of subgraph-centric frameworks. However, traditional graph partition algorithms have significant difficulties in processing large-scale power-law graphs. The major problem is the communication bottleneck found in many subgraph-centric frameworks. Detailed analysis indicates that the communication bottleneck is caused by the huge communication volume or the extreme message imbalance among partitioned subgraphs. The traditional partition algorithms do not consider both factors at the same time, especially on power-law graphs. In this paper, we propose a novel efficient and balanced vertex-cut graph partition algorithm (EBV) which grants appropriate weights to the overall communication cost and communication balance. We observe that the number of replicated vertices and the balance of edge and vertex assignment have a great influence on communication patterns of distributed subgraph-centric frameworks, which further affect the overall performance. Based on this insight, We design an evaluation function that quantifies the proportion of replicated vertices and the balance of edges and vertices assignments as important parameters. Besides, we sort the order of edge processing by the sum of end-vertices' degrees from small to large. Experiments show that EBV reduces replication factor and communication by at least 21.8% and 23.7% respectively than other self-based partition algorithms. When deployed in the subgraph-centric framework, it reduces the running time on power-law graphs by an average of 16.8% compared with the state-of-the-art partition algorithm. Our results indicate that EBV has a great potential in improving the performance of subgraph-centric frameworks for the parallel large-scale power-law graph processing." @default.
- W3204227543 created "2021-10-11" @default.
- W3204227543 creator A5007322337 @default.
- W3204227543 creator A5013989244 @default.
- W3204227543 creator A5017918038 @default.
- W3204227543 creator A5018937994 @default.
- W3204227543 creator A5021460004 @default.
- W3204227543 creator A5071068004 @default.
- W3204227543 date "2021-07-01" @default.
- W3204227543 modified "2023-09-23" @default.
- W3204227543 title "An Efficient and Balanced Graph Partition Algorithm for the Subgraph-Centric Programming Model on Large-scale Power-law Graphs" @default.
- W3204227543 cites W1605711022 @default.
- W3204227543 cites W1981193610 @default.
- W3204227543 cites W2006023152 @default.
- W3204227543 cites W2011601876 @default.
- W3204227543 cites W2031709923 @default.
- W3204227543 cites W2045271686 @default.
- W3204227543 cites W2084224084 @default.
- W3204227543 cites W2086254934 @default.
- W3204227543 cites W2093053744 @default.
- W3204227543 cites W2096544401 @default.
- W3204227543 cites W2101196063 @default.
- W3204227543 cites W2124637492 @default.
- W3204227543 cites W2161455936 @default.
- W3204227543 cites W2170616854 @default.
- W3204227543 cites W2173213060 @default.
- W3204227543 cites W217817341 @default.
- W3204227543 cites W2259576664 @default.
- W3204227543 cites W2613088476 @default.
- W3204227543 cites W2745138925 @default.
- W3204227543 cites W2798525482 @default.
- W3204227543 cites W2914894107 @default.
- W3204227543 cites W2962788437 @default.
- W3204227543 cites W2972120381 @default.
- W3204227543 cites W2990947761 @default.
- W3204227543 cites W4213234375 @default.
- W3204227543 doi "https://doi.org/10.1109/icdcs51616.2021.00016" @default.
- W3204227543 hasPublicationYear "2021" @default.
- W3204227543 type Work @default.
- W3204227543 sameAs 3204227543 @default.
- W3204227543 citedByCount "1" @default.
- W3204227543 countsByYear W32042275432023 @default.
- W3204227543 crossrefType "proceedings-article" @default.
- W3204227543 hasAuthorship W3204227543A5007322337 @default.
- W3204227543 hasAuthorship W3204227543A5013989244 @default.
- W3204227543 hasAuthorship W3204227543A5017918038 @default.
- W3204227543 hasAuthorship W3204227543A5018937994 @default.
- W3204227543 hasAuthorship W3204227543A5021460004 @default.
- W3204227543 hasAuthorship W3204227543A5071068004 @default.
- W3204227543 hasBestOaLocation W32042275432 @default.
- W3204227543 hasConcept C11413529 @default.
- W3204227543 hasConcept C114614502 @default.
- W3204227543 hasConcept C132525143 @default.
- W3204227543 hasConcept C149635348 @default.
- W3204227543 hasConcept C191241153 @default.
- W3204227543 hasConcept C203776342 @default.
- W3204227543 hasConcept C22149727 @default.
- W3204227543 hasConcept C2780513914 @default.
- W3204227543 hasConcept C33923547 @default.
- W3204227543 hasConcept C41008148 @default.
- W3204227543 hasConcept C42812 @default.
- W3204227543 hasConcept C48903430 @default.
- W3204227543 hasConcept C80444323 @default.
- W3204227543 hasConcept C80899671 @default.
- W3204227543 hasConceptScore W3204227543C11413529 @default.
- W3204227543 hasConceptScore W3204227543C114614502 @default.
- W3204227543 hasConceptScore W3204227543C132525143 @default.
- W3204227543 hasConceptScore W3204227543C149635348 @default.
- W3204227543 hasConceptScore W3204227543C191241153 @default.
- W3204227543 hasConceptScore W3204227543C203776342 @default.
- W3204227543 hasConceptScore W3204227543C22149727 @default.
- W3204227543 hasConceptScore W3204227543C2780513914 @default.
- W3204227543 hasConceptScore W3204227543C33923547 @default.
- W3204227543 hasConceptScore W3204227543C41008148 @default.
- W3204227543 hasConceptScore W3204227543C42812 @default.
- W3204227543 hasConceptScore W3204227543C48903430 @default.
- W3204227543 hasConceptScore W3204227543C80444323 @default.
- W3204227543 hasConceptScore W3204227543C80899671 @default.
- W3204227543 hasFunder F4320321001 @default.
- W3204227543 hasLocation W32042275431 @default.
- W3204227543 hasLocation W32042275432 @default.
- W3204227543 hasOpenAccess W3204227543 @default.
- W3204227543 hasPrimaryLocation W32042275431 @default.
- W3204227543 hasRelatedWork W1969073015 @default.
- W3204227543 hasRelatedWork W2063813041 @default.
- W3204227543 hasRelatedWork W2107523406 @default.
- W3204227543 hasRelatedWork W212891429 @default.
- W3204227543 hasRelatedWork W2151708648 @default.
- W3204227543 hasRelatedWork W2368430003 @default.
- W3204227543 hasRelatedWork W2759304218 @default.
- W3204227543 hasRelatedWork W2913428592 @default.
- W3204227543 hasRelatedWork W4367189681 @default.
- W3204227543 hasRelatedWork W2065982392 @default.
- W3204227543 isParatext "false" @default.
- W3204227543 isRetracted "false" @default.
- W3204227543 magId "3204227543" @default.
- W3204227543 workType "article" @default.