Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204232384> ?p ?o ?g. }
- W3204232384 endingPage "108488" @default.
- W3204232384 startingPage "108488" @default.
- W3204232384 abstract "• Four-terminal-architecture CEDTS is proposed for thermal error control. • Hyper-parameters of ILSTM network are optimized by ISOA. • Comprehensive machining error model is constructed according to HCT theory. • Data services, including clustering analysis, status monitoring, and data funsion, are provided. • GPU-based cloud computing layer is used to expedite executing process. Production lines are important for the high-accuracy and efficient machining of parts. The thermal error of key machining equipment in production lines has a significant effect on the geometric accuracy of machined parts. To improve the geometric accuracy of machined parts, the thermal error of key machining equipment in a production line should be controlled. Then the collection, storage, analysis, and calculation of the large-volume manufacturing data are essential. But the processing involving the large-volume manufacturing data is time-consuming and challenging, which leads to low executing efficiency. To solve the problem that the system is inefficient in the processing of the large-volume manufacturing data, a four-terminal-architecture cloud-edge-based digital twin system (CEDTS) is proposed with a reasonable functional division of four terminals, and thus the executing efficiency of CEDTS is expedited. Then the error mechanism is studied to prove the long-term memorizing behavior, and an improved seagull optimization algorithm (ISOA) is proposed based on the chaos thought to optimize the weights, thresholds, and the number of iterations of an improved long short term memory (ILSTM) network with the attention mechanism. The ISOA-ILSTM error model is embedded into the intelligent decision-making terminal of CEDTS to predict the thermal error. Moreover, a comprehensive machining error model is proposed and embedded into the intelligent decision-making terminal of CEDTS to control the thermal error. Finally, the effectiveness of CEDTS is verified on a production line. The results show that the reduction of the large-volume manufacturing data for the collection, storage, analysis, and calculation is significant. With the implementation of CEDTS, the fluctuation range of geometric errors of machined parts is reduced significantly. The executing time is reduced by more than half by CEDTS with the GPU acceleration." @default.
- W3204232384 created "2021-10-11" @default.
- W3204232384 creator A5017032066 @default.
- W3204232384 creator A5044883250 @default.
- W3204232384 creator A5045802007 @default.
- W3204232384 creator A5073134247 @default.
- W3204232384 date "2022-03-01" @default.
- W3204232384 modified "2023-10-06" @default.
- W3204232384 title "A four-terminal-architecture cloud-edge-based digital twin system for thermal error control of key machining equipment in production lines" @default.
- W3204232384 cites W1185519214 @default.
- W3204232384 cites W1972362576 @default.
- W3204232384 cites W1995267334 @default.
- W3204232384 cites W2013139190 @default.
- W3204232384 cites W2038550638 @default.
- W3204232384 cites W2160110002 @default.
- W3204232384 cites W2609082117 @default.
- W3204232384 cites W2614975689 @default.
- W3204232384 cites W2765377992 @default.
- W3204232384 cites W2902323097 @default.
- W3204232384 cites W2904977546 @default.
- W3204232384 cites W2939451523 @default.
- W3204232384 cites W2941816857 @default.
- W3204232384 cites W2948490758 @default.
- W3204232384 cites W2962931931 @default.
- W3204232384 cites W2963148318 @default.
- W3204232384 cites W2972237946 @default.
- W3204232384 cites W2996165834 @default.
- W3204232384 cites W2997667970 @default.
- W3204232384 cites W3003384280 @default.
- W3204232384 cites W3003545729 @default.
- W3204232384 cites W3003877075 @default.
- W3204232384 cites W3003895975 @default.
- W3204232384 cites W3005583742 @default.
- W3204232384 cites W3007647087 @default.
- W3204232384 cites W3014191625 @default.
- W3204232384 cites W3019251610 @default.
- W3204232384 cites W3021726999 @default.
- W3204232384 cites W3031421697 @default.
- W3204232384 cites W3032631640 @default.
- W3204232384 cites W3034913946 @default.
- W3204232384 cites W3037695950 @default.
- W3204232384 cites W3038000350 @default.
- W3204232384 cites W3040971302 @default.
- W3204232384 cites W3041528150 @default.
- W3204232384 cites W3041952586 @default.
- W3204232384 cites W3043769879 @default.
- W3204232384 cites W3045711566 @default.
- W3204232384 cites W3048026303 @default.
- W3204232384 cites W3082421867 @default.
- W3204232384 cites W3087391159 @default.
- W3204232384 cites W3088567261 @default.
- W3204232384 cites W3093010392 @default.
- W3204232384 cites W3094452610 @default.
- W3204232384 cites W3099559766 @default.
- W3204232384 cites W3101546351 @default.
- W3204232384 cites W3108165421 @default.
- W3204232384 cites W3110547404 @default.
- W3204232384 cites W3112130234 @default.
- W3204232384 cites W3117197485 @default.
- W3204232384 cites W3174872176 @default.
- W3204232384 cites W3176075071 @default.
- W3204232384 cites W3181117565 @default.
- W3204232384 cites W3181670971 @default.
- W3204232384 doi "https://doi.org/10.1016/j.ymssp.2021.108488" @default.
- W3204232384 hasPublicationYear "2022" @default.
- W3204232384 type Work @default.
- W3204232384 sameAs 3204232384 @default.
- W3204232384 citedByCount "13" @default.
- W3204232384 countsByYear W32042323842022 @default.
- W3204232384 countsByYear W32042323842023 @default.
- W3204232384 crossrefType "journal-article" @default.
- W3204232384 hasAuthorship W3204232384A5017032066 @default.
- W3204232384 hasAuthorship W3204232384A5044883250 @default.
- W3204232384 hasAuthorship W3204232384A5045802007 @default.
- W3204232384 hasAuthorship W3204232384A5073134247 @default.
- W3204232384 hasConcept C111919701 @default.
- W3204232384 hasConcept C121332964 @default.
- W3204232384 hasConcept C127413603 @default.
- W3204232384 hasConcept C154945302 @default.
- W3204232384 hasConcept C162307627 @default.
- W3204232384 hasConcept C20556612 @default.
- W3204232384 hasConcept C26517878 @default.
- W3204232384 hasConcept C38652104 @default.
- W3204232384 hasConcept C41008148 @default.
- W3204232384 hasConcept C523214423 @default.
- W3204232384 hasConcept C62520636 @default.
- W3204232384 hasConcept C78519656 @default.
- W3204232384 hasConcept C79403827 @default.
- W3204232384 hasConcept C79974875 @default.
- W3204232384 hasConcept C99862985 @default.
- W3204232384 hasConceptScore W3204232384C111919701 @default.
- W3204232384 hasConceptScore W3204232384C121332964 @default.
- W3204232384 hasConceptScore W3204232384C127413603 @default.
- W3204232384 hasConceptScore W3204232384C154945302 @default.
- W3204232384 hasConceptScore W3204232384C162307627 @default.
- W3204232384 hasConceptScore W3204232384C20556612 @default.
- W3204232384 hasConceptScore W3204232384C26517878 @default.
- W3204232384 hasConceptScore W3204232384C38652104 @default.