Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204233622> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3204233622 endingPage "S978" @default.
- W3204233622 startingPage "S977" @default.
- W3204233622 abstract "Purpose or Objective: In 2019, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was identified in Wuhan, China and in March 2020 the World Health Organization (WHO) declared the global public health emergency describing the situation as a pandemic. The most serious clinical entity of the respiratory syndrome associated with SARS-CoV-2 is a severe interstitial pneumonia. Radiation pneumonitis (RP) is a typical toxicity related to chemoradiation for locally advanced lung cancer patients. RP and SARS-CoV-2 interstitial pneumonia show overlapping clinical features and differential diagnosis maybe be challenging. The aim of this study is to test the performance of a deep learning algorithm in discriminating radiation pneumonitis (RP) from COVID-19 pneumonia. Materials and Methods: Seventy patients were analysed, thirty-four affected by COVID-19 pneumonia and thirty-six by radiation therapy-related pneumonitis (RP group). The CT images were quantitatively analyzed by InferReadTM CT Lung (COVID-19) (Infervision, Europe GmbH, Wiesbaden, Germany), an Artificial Intelligence solution specifically developed for diagnosis and management support of COVID-19 pneumonia, based on an AI algorithm built on a novel deep convolutional neural network structure. Based on a preliminary analysis of the deep-learning algorithm, the cut-off value of the estimated risk probability of COVID-19 was set at levels higher than 30% (“COVID19 High Risk”), as the percentage of COVID-19 confirmed patients above this cut-off value was higher than 95%. Values of estimated risk probability below 30% were classified as “COVID19 Low Risk. Results: Most patients presenting RP were classified by the algorithm as “COVID19 Low Risk” (66.7%). All RP classified as “COVID19 High Risk” were ≥G3 (CTC AE vers. 4.0). The algorithm showed good accuracy in the detection of RP against COVID-19 pneumonia (sensitivity = 97.0%, specificity = 2%, AUC = 0.72). This accuracy increased when an estimated COVID-19 risk probability cut-off of 30% was applied (sensitivity 76%, specificity 63%, AUC = 0.84). The total lung volume involvement was higher in COVID 19 patients compared with RP group (mean= 105.54 cc, IQ range= 44.68-257.07 vs mean=29.14 cc, IQ range= 5.59-69.20, p <0.001). In patients pretreated with radiation therapy and actually presenting diffuse pneumonitis classified by AI as “COVID19 High Risk” a combination of dosimetric factors may help to identify RP (PPV increased from 60% to 99.8%). Conclusion: Deep-learning algorithm can help to discriminate RP from COVID-19 pneumonia, classifying most RP as “Lowrisk COVID19” (below the cut off value of COVID-19 risk probability of 30%). In patients classified as high risk , treated with radiation therapy also dosimetric factors should be taken into account." @default.
- W3204233622 created "2021-10-11" @default.
- W3204233622 creator A5039880019 @default.
- W3204233622 creator A5045805982 @default.
- W3204233622 creator A5058001859 @default.
- W3204233622 creator A5063528629 @default.
- W3204233622 creator A5065338135 @default.
- W3204233622 creator A5087480086 @default.
- W3204233622 date "2021-08-01" @default.
- W3204233622 modified "2023-10-02" @default.
- W3204233622 title "PO-1179 Radiation induced pneumonitis during COVID-19: artificial intelligence for differential diagnosis." @default.
- W3204233622 doi "https://doi.org/10.1016/s0167-8140(21)07630-1" @default.
- W3204233622 hasPublicationYear "2021" @default.
- W3204233622 type Work @default.
- W3204233622 sameAs 3204233622 @default.
- W3204233622 citedByCount "0" @default.
- W3204233622 crossrefType "journal-article" @default.
- W3204233622 hasAuthorship W3204233622A5039880019 @default.
- W3204233622 hasAuthorship W3204233622A5045805982 @default.
- W3204233622 hasAuthorship W3204233622A5058001859 @default.
- W3204233622 hasAuthorship W3204233622A5063528629 @default.
- W3204233622 hasAuthorship W3204233622A5065338135 @default.
- W3204233622 hasAuthorship W3204233622A5087480086 @default.
- W3204233622 hasBestOaLocation W32042336221 @default.
- W3204233622 hasConcept C121332964 @default.
- W3204233622 hasConcept C126322002 @default.
- W3204233622 hasConcept C142724271 @default.
- W3204233622 hasConcept C2777714996 @default.
- W3204233622 hasConcept C2779134260 @default.
- W3204233622 hasConcept C2779524853 @default.
- W3204233622 hasConcept C2780801072 @default.
- W3204233622 hasConcept C2908954928 @default.
- W3204233622 hasConcept C3007834351 @default.
- W3204233622 hasConcept C3008058167 @default.
- W3204233622 hasConcept C509974204 @default.
- W3204233622 hasConcept C524204448 @default.
- W3204233622 hasConcept C71924100 @default.
- W3204233622 hasConcept C93226319 @default.
- W3204233622 hasConcept C97355855 @default.
- W3204233622 hasConceptScore W3204233622C121332964 @default.
- W3204233622 hasConceptScore W3204233622C126322002 @default.
- W3204233622 hasConceptScore W3204233622C142724271 @default.
- W3204233622 hasConceptScore W3204233622C2777714996 @default.
- W3204233622 hasConceptScore W3204233622C2779134260 @default.
- W3204233622 hasConceptScore W3204233622C2779524853 @default.
- W3204233622 hasConceptScore W3204233622C2780801072 @default.
- W3204233622 hasConceptScore W3204233622C2908954928 @default.
- W3204233622 hasConceptScore W3204233622C3007834351 @default.
- W3204233622 hasConceptScore W3204233622C3008058167 @default.
- W3204233622 hasConceptScore W3204233622C509974204 @default.
- W3204233622 hasConceptScore W3204233622C524204448 @default.
- W3204233622 hasConceptScore W3204233622C71924100 @default.
- W3204233622 hasConceptScore W3204233622C93226319 @default.
- W3204233622 hasConceptScore W3204233622C97355855 @default.
- W3204233622 hasLocation W32042336221 @default.
- W3204233622 hasLocation W32042336222 @default.
- W3204233622 hasOpenAccess W3204233622 @default.
- W3204233622 hasPrimaryLocation W32042336221 @default.
- W3204233622 hasRelatedWork W3036406564 @default.
- W3204233622 hasRelatedWork W3176864053 @default.
- W3204233622 hasRelatedWork W3198183218 @default.
- W3204233622 hasRelatedWork W4205317059 @default.
- W3204233622 hasRelatedWork W4205810683 @default.
- W3204233622 hasRelatedWork W4206548596 @default.
- W3204233622 hasRelatedWork W4206651655 @default.
- W3204233622 hasRelatedWork W4206669628 @default.
- W3204233622 hasRelatedWork W4224279380 @default.
- W3204233622 hasRelatedWork W3127156785 @default.
- W3204233622 hasVolume "161" @default.
- W3204233622 isParatext "false" @default.
- W3204233622 isRetracted "false" @default.
- W3204233622 magId "3204233622" @default.
- W3204233622 workType "article" @default.