Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204234540> ?p ?o ?g. }
- W3204234540 endingPage "3873" @default.
- W3204234540 startingPage "3865" @default.
- W3204234540 abstract "Health professionals extensively use Two-Dimensional (2D) Ultrasound (US) videos and images to visualize and measure internal organs for various purposes including evaluation of muscle architectural changes. US images can be used to measure abdominal muscles dimensions for the diagnosis and creation of customized treatment plans for patients with Low Back Pain (LBP), however, they are difficult to interpret. Due to high variability, skilled professionals with specialized training are required to take measurements to avoid low intra-observer reliability. This variability stems from the challenging nature of accurately finding the correct spatial location of measurement endpoints in abdominal US images. In this paper, we use a Deep Learning (DL) approach to automate the measurement of the abdominal muscle thickness in 2D US images. By treating the problem as a localization task, we develop a modified Fully Convolutional Network (FCN) architecture to generate blobs of coordinate locations of measurement endpoints, similar to what a human operator does. We demonstrate that using the TrA400 US image dataset, our network achieves a Mean Absolute Error (MAE) of 0.3125 on the test set, which almost matches the performance of skilled ultrasound technicians. Our approach can facilitate next steps for automating the process of measurements in 2D US images, while reducing inter-observer as well as intra-observer variability for more effective clinical outcomes." @default.
- W3204234540 created "2021-10-11" @default.
- W3204234540 creator A5004903288 @default.
- W3204234540 creator A5005715528 @default.
- W3204234540 creator A5007929091 @default.
- W3204234540 creator A5009413337 @default.
- W3204234540 creator A5028905152 @default.
- W3204234540 creator A5067564596 @default.
- W3204234540 date "2021-10-01" @default.
- W3204234540 modified "2023-10-16" @default.
- W3204234540 title "A Deep Learning Localization Method for Measuring Abdominal Muscle Dimensions in Ultrasound Images" @default.
- W3204234540 cites W1686810756 @default.
- W3204234540 cites W1901129140 @default.
- W3204234540 cites W1936750108 @default.
- W3204234540 cites W1971788694 @default.
- W3204234540 cites W2027584307 @default.
- W3204234540 cites W2067246910 @default.
- W3204234540 cites W2096150699 @default.
- W3204234540 cites W2117539524 @default.
- W3204234540 cites W2139488668 @default.
- W3204234540 cites W2156635522 @default.
- W3204234540 cites W2194775991 @default.
- W3204234540 cites W2273396394 @default.
- W3204234540 cites W2282080668 @default.
- W3204234540 cites W2323929895 @default.
- W3204234540 cites W2395611524 @default.
- W3204234540 cites W2419458624 @default.
- W3204234540 cites W2517954747 @default.
- W3204234540 cites W2525974879 @default.
- W3204234540 cites W2548537168 @default.
- W3204234540 cites W2595272013 @default.
- W3204234540 cites W2735582614 @default.
- W3204234540 cites W2754156725 @default.
- W3204234540 cites W2769152880 @default.
- W3204234540 cites W2789876780 @default.
- W3204234540 cites W2794809810 @default.
- W3204234540 cites W2809254203 @default.
- W3204234540 cites W2829751935 @default.
- W3204234540 cites W2883929025 @default.
- W3204234540 cites W2884833628 @default.
- W3204234540 cites W2895789350 @default.
- W3204234540 cites W2916744450 @default.
- W3204234540 cites W2956786564 @default.
- W3204234540 cites W2960571921 @default.
- W3204234540 cites W2962835968 @default.
- W3204234540 cites W2962914239 @default.
- W3204234540 cites W2963104294 @default.
- W3204234540 cites W2963623257 @default.
- W3204234540 cites W2964121744 @default.
- W3204234540 cites W2995942064 @default.
- W3204234540 cites W3015438922 @default.
- W3204234540 cites W3023970783 @default.
- W3204234540 cites W3033600500 @default.
- W3204234540 cites W3034399482 @default.
- W3204234540 cites W3037340973 @default.
- W3204234540 cites W3090584996 @default.
- W3204234540 cites W3098234188 @default.
- W3204234540 cites W3098984817 @default.
- W3204234540 cites W3106306218 @default.
- W3204234540 cites W3120935246 @default.
- W3204234540 doi "https://doi.org/10.1109/jbhi.2021.3085019" @default.
- W3204234540 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34057902" @default.
- W3204234540 hasPublicationYear "2021" @default.
- W3204234540 type Work @default.
- W3204234540 sameAs 3204234540 @default.
- W3204234540 citedByCount "7" @default.
- W3204234540 countsByYear W32042345402022 @default.
- W3204234540 countsByYear W32042345402023 @default.
- W3204234540 crossrefType "journal-article" @default.
- W3204234540 hasAuthorship W3204234540A5004903288 @default.
- W3204234540 hasAuthorship W3204234540A5005715528 @default.
- W3204234540 hasAuthorship W3204234540A5007929091 @default.
- W3204234540 hasAuthorship W3204234540A5009413337 @default.
- W3204234540 hasAuthorship W3204234540A5028905152 @default.
- W3204234540 hasAuthorship W3204234540A5067564596 @default.
- W3204234540 hasBestOaLocation W32042345402 @default.
- W3204234540 hasConcept C108583219 @default.
- W3204234540 hasConcept C121332964 @default.
- W3204234540 hasConcept C126838900 @default.
- W3204234540 hasConcept C143753070 @default.
- W3204234540 hasConcept C153180895 @default.
- W3204234540 hasConcept C154945302 @default.
- W3204234540 hasConcept C2780704645 @default.
- W3204234540 hasConcept C31972630 @default.
- W3204234540 hasConcept C41008148 @default.
- W3204234540 hasConcept C62520636 @default.
- W3204234540 hasConcept C71924100 @default.
- W3204234540 hasConcept C81363708 @default.
- W3204234540 hasConceptScore W3204234540C108583219 @default.
- W3204234540 hasConceptScore W3204234540C121332964 @default.
- W3204234540 hasConceptScore W3204234540C126838900 @default.
- W3204234540 hasConceptScore W3204234540C143753070 @default.
- W3204234540 hasConceptScore W3204234540C153180895 @default.
- W3204234540 hasConceptScore W3204234540C154945302 @default.
- W3204234540 hasConceptScore W3204234540C2780704645 @default.
- W3204234540 hasConceptScore W3204234540C31972630 @default.
- W3204234540 hasConceptScore W3204234540C41008148 @default.
- W3204234540 hasConceptScore W3204234540C62520636 @default.