Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204237165> ?p ?o ?g. }
- W3204237165 endingPage "2555" @default.
- W3204237165 startingPage "2547" @default.
- W3204237165 abstract "The estimate of the remaining time of an ongoing wave of epidemic spreading is a critical issue. Due to the variations of a wide range of parameters in an epidemic, for simple models such as Susceptible-Infected-Removed (SIR) model, it is difficult to estimate such a time scale. On the other hand, multidimensional data with a large set attributes are precisely what one can use in statistical learning algorithms to make predictions. Here we show, how the predictability of the SIR model changes with various parameters using a supervised learning algorithm. We then estimate the condition in which the model gives the least error in predicting the duration of the first wave of the COVID-19 pandemic in different states in India. Finally, we use the SIR model with the above mentioned optimal conditions to generate a training data set and use it in the supervised learning algorithm to estimate the end-time of the ongoing second wave of the pandemic in different states in India." @default.
- W3204237165 created "2021-10-11" @default.
- W3204237165 creator A5003871325 @default.
- W3204237165 creator A5023357894 @default.
- W3204237165 creator A5035100273 @default.
- W3204237165 creator A5049010256 @default.
- W3204237165 creator A5072193586 @default.
- W3204237165 date "2021-10-01" @default.
- W3204237165 modified "2023-09-27" @default.
- W3204237165 title "Machine learning predictions of COVID-19 second wave end-times in Indian states" @default.
- W3204237165 cites W1480376833 @default.
- W3204237165 cites W1516674055 @default.
- W3204237165 cites W2113143455 @default.
- W3204237165 cites W2565167788 @default.
- W3204237165 cites W2904940915 @default.
- W3204237165 cites W3004280078 @default.
- W3204237165 cites W3010131837 @default.
- W3204237165 cites W3013594674 @default.
- W3204237165 cites W3013649595 @default.
- W3204237165 cites W3019351867 @default.
- W3204237165 cites W3022122691 @default.
- W3204237165 cites W3022787740 @default.
- W3204237165 cites W3023190093 @default.
- W3204237165 cites W3036593846 @default.
- W3204237165 cites W3041611845 @default.
- W3204237165 cites W3043699273 @default.
- W3204237165 cites W3048469118 @default.
- W3204237165 cites W3092243072 @default.
- W3204237165 cites W3095217282 @default.
- W3204237165 cites W3110240736 @default.
- W3204237165 cites W3124928229 @default.
- W3204237165 cites W3134334546 @default.
- W3204237165 cites W3139511250 @default.
- W3204237165 cites W3155529422 @default.
- W3204237165 doi "https://doi.org/10.1007/s12648-021-02195-x" @default.
- W3204237165 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8485314" @default.
- W3204237165 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34611386" @default.
- W3204237165 hasPublicationYear "2021" @default.
- W3204237165 type Work @default.
- W3204237165 sameAs 3204237165 @default.
- W3204237165 citedByCount "1" @default.
- W3204237165 countsByYear W32042371652022 @default.
- W3204237165 crossrefType "journal-article" @default.
- W3204237165 hasAuthorship W3204237165A5003871325 @default.
- W3204237165 hasAuthorship W3204237165A5023357894 @default.
- W3204237165 hasAuthorship W3204237165A5035100273 @default.
- W3204237165 hasAuthorship W3204237165A5049010256 @default.
- W3204237165 hasAuthorship W3204237165A5072193586 @default.
- W3204237165 hasBestOaLocation W32042371651 @default.
- W3204237165 hasConcept C105795698 @default.
- W3204237165 hasConcept C112758219 @default.
- W3204237165 hasConcept C11413529 @default.
- W3204237165 hasConcept C119857082 @default.
- W3204237165 hasConcept C121332964 @default.
- W3204237165 hasConcept C142724271 @default.
- W3204237165 hasConcept C144024400 @default.
- W3204237165 hasConcept C149923435 @default.
- W3204237165 hasConcept C154945302 @default.
- W3204237165 hasConcept C159985019 @default.
- W3204237165 hasConcept C1627819 @default.
- W3204237165 hasConcept C177264268 @default.
- W3204237165 hasConcept C192562407 @default.
- W3204237165 hasConcept C197640229 @default.
- W3204237165 hasConcept C199360897 @default.
- W3204237165 hasConcept C204323151 @default.
- W3204237165 hasConcept C24890656 @default.
- W3204237165 hasConcept C2778755073 @default.
- W3204237165 hasConcept C2779134260 @default.
- W3204237165 hasConcept C2908647359 @default.
- W3204237165 hasConcept C3008058167 @default.
- W3204237165 hasConcept C33923547 @default.
- W3204237165 hasConcept C41008148 @default.
- W3204237165 hasConcept C51632099 @default.
- W3204237165 hasConcept C524204448 @default.
- W3204237165 hasConcept C58489278 @default.
- W3204237165 hasConcept C62520636 @default.
- W3204237165 hasConcept C71924100 @default.
- W3204237165 hasConceptScore W3204237165C105795698 @default.
- W3204237165 hasConceptScore W3204237165C112758219 @default.
- W3204237165 hasConceptScore W3204237165C11413529 @default.
- W3204237165 hasConceptScore W3204237165C119857082 @default.
- W3204237165 hasConceptScore W3204237165C121332964 @default.
- W3204237165 hasConceptScore W3204237165C142724271 @default.
- W3204237165 hasConceptScore W3204237165C144024400 @default.
- W3204237165 hasConceptScore W3204237165C149923435 @default.
- W3204237165 hasConceptScore W3204237165C154945302 @default.
- W3204237165 hasConceptScore W3204237165C159985019 @default.
- W3204237165 hasConceptScore W3204237165C1627819 @default.
- W3204237165 hasConceptScore W3204237165C177264268 @default.
- W3204237165 hasConceptScore W3204237165C192562407 @default.
- W3204237165 hasConceptScore W3204237165C197640229 @default.
- W3204237165 hasConceptScore W3204237165C199360897 @default.
- W3204237165 hasConceptScore W3204237165C204323151 @default.
- W3204237165 hasConceptScore W3204237165C24890656 @default.
- W3204237165 hasConceptScore W3204237165C2778755073 @default.
- W3204237165 hasConceptScore W3204237165C2779134260 @default.
- W3204237165 hasConceptScore W3204237165C2908647359 @default.
- W3204237165 hasConceptScore W3204237165C3008058167 @default.