Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204244763> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3204244763 endingPage "243" @default.
- W3204244763 startingPage "239" @default.
- W3204244763 abstract "The present study assessed the applicability of convolutional neural network (CNN), which showed superior performance for classification, segmentation, and natural language processing, to river water quality prediction. Monthly data was compiled from upstream and downstream water quality monitoring stations in the Hwang River over the period of January 2007 through December 2020, from which training and test sets were constructed in the ratio of 70:30. The performance of CNN consisting of single and multiple layers were evaluated separately using univariate data with single dependent variable (i.e., either chemical oxygen demand (COD) or chlorophyll-a (Chl-a) as well as multivariate data with dependent and 9 independent variables. The results showed that the prediction accuracy of the proposed CNN algorithm tested with univariate data was noticeably higher for COD than for Chl-a (in terms of target variable) as well as for multiple layers than for single layer (with respect to model architecture). In addition, the CNN algorithm evaluated with multivariate data achieved had better prediction performance than that of univariate data although its performance varied widely among data sets, and to a less extent, among stations and target variables. No measurable difference was also found in prediction performance of the CNN algorithm (for two target dependent variables) according to the number of (important) independent variables. All these results demonstrate that while the proposed CNN algorithm can be adopted to predict (monthly) water quality variables, its careful architecture design is yet required to achieve substantial performance improvement." @default.
- W3204244763 created "2021-10-11" @default.
- W3204244763 creator A5010460965 @default.
- W3204244763 creator A5028716491 @default.
- W3204244763 creator A5060540152 @default.
- W3204244763 creator A5086912386 @default.
- W3204244763 date "2021-08-31" @default.
- W3204244763 modified "2023-09-27" @default.
- W3204244763 title "Assessing the Prediction Accuracy of River Water Quality Using Convolutional Neural Network" @default.
- W3204244763 doi "https://doi.org/10.26511/jkset.22.4.1" @default.
- W3204244763 hasPublicationYear "2021" @default.
- W3204244763 type Work @default.
- W3204244763 sameAs 3204244763 @default.
- W3204244763 citedByCount "0" @default.
- W3204244763 crossrefType "journal-article" @default.
- W3204244763 hasAuthorship W3204244763A5010460965 @default.
- W3204244763 hasAuthorship W3204244763A5028716491 @default.
- W3204244763 hasAuthorship W3204244763A5060540152 @default.
- W3204244763 hasAuthorship W3204244763A5086912386 @default.
- W3204244763 hasConcept C105795698 @default.
- W3204244763 hasConcept C119857082 @default.
- W3204244763 hasConcept C124101348 @default.
- W3204244763 hasConcept C134306372 @default.
- W3204244763 hasConcept C153180895 @default.
- W3204244763 hasConcept C154945302 @default.
- W3204244763 hasConcept C161584116 @default.
- W3204244763 hasConcept C182365436 @default.
- W3204244763 hasConcept C18903297 @default.
- W3204244763 hasConcept C199163554 @default.
- W3204244763 hasConcept C27574286 @default.
- W3204244763 hasConcept C2780797713 @default.
- W3204244763 hasConcept C33923547 @default.
- W3204244763 hasConcept C41008148 @default.
- W3204244763 hasConcept C50644808 @default.
- W3204244763 hasConcept C81363708 @default.
- W3204244763 hasConcept C86803240 @default.
- W3204244763 hasConceptScore W3204244763C105795698 @default.
- W3204244763 hasConceptScore W3204244763C119857082 @default.
- W3204244763 hasConceptScore W3204244763C124101348 @default.
- W3204244763 hasConceptScore W3204244763C134306372 @default.
- W3204244763 hasConceptScore W3204244763C153180895 @default.
- W3204244763 hasConceptScore W3204244763C154945302 @default.
- W3204244763 hasConceptScore W3204244763C161584116 @default.
- W3204244763 hasConceptScore W3204244763C182365436 @default.
- W3204244763 hasConceptScore W3204244763C18903297 @default.
- W3204244763 hasConceptScore W3204244763C199163554 @default.
- W3204244763 hasConceptScore W3204244763C27574286 @default.
- W3204244763 hasConceptScore W3204244763C2780797713 @default.
- W3204244763 hasConceptScore W3204244763C33923547 @default.
- W3204244763 hasConceptScore W3204244763C41008148 @default.
- W3204244763 hasConceptScore W3204244763C50644808 @default.
- W3204244763 hasConceptScore W3204244763C81363708 @default.
- W3204244763 hasConceptScore W3204244763C86803240 @default.
- W3204244763 hasIssue "4" @default.
- W3204244763 hasLocation W32042447631 @default.
- W3204244763 hasOpenAccess W3204244763 @default.
- W3204244763 hasPrimaryLocation W32042447631 @default.
- W3204244763 hasRelatedWork W10536948 @default.
- W3204244763 hasRelatedWork W2956671 @default.
- W3204244763 hasRelatedWork W4038763 @default.
- W3204244763 hasRelatedWork W4911686 @default.
- W3204244763 hasRelatedWork W5181773 @default.
- W3204244763 hasRelatedWork W5835750 @default.
- W3204244763 hasRelatedWork W653131 @default.
- W3204244763 hasRelatedWork W7376321 @default.
- W3204244763 hasRelatedWork W8627645 @default.
- W3204244763 hasRelatedWork W9190101 @default.
- W3204244763 hasVolume "22" @default.
- W3204244763 isParatext "false" @default.
- W3204244763 isRetracted "false" @default.
- W3204244763 magId "3204244763" @default.
- W3204244763 workType "article" @default.