Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204245305> ?p ?o ?g. }
- W3204245305 endingPage "3433" @default.
- W3204245305 startingPage "3419" @default.
- W3204245305 abstract "The environment around general-purpose service robots has a dynamic nature. Accordingly, even the robot’s programmer cannot predict all the possible external failures which the robot may confront. This research proposes an online incremental learning method that can be further used to autonomously handle external failures originating from a change in the environment. Existing research typically offers special-purpose solutions. Furthermore, the current incremental online learning algorithms cannot generalize well with just a few observations. In contrast, our method extracts a set of hypotheses, which can then be used for finding the best recovery behavior at each failure state. The proposed argumentation-based online incremental learning approach uses an abstract and bipolar argumentation framework to extract the most relevant hypotheses and model the defeasibility relation between them. This leads to a novel online incremental learning approach that overcomes the addressed problems and can be used in different domains including robotic applications. We have compared our proposed approach with state-of-the-art online incremental learning approaches, an approximation-based reinforcement learning method, and several online contextual bandit algorithms. The experimental results show that our approach learns more quickly with a lower number of observations and also has higher final precision than the other methods. Note to Practitioners—This work proposes an online incremental learning method that learns faster by using a lower number of failure states than other state-of-the-art approaches. The resulting technique also has higher final learning precision than other methods. Argumentation-based online incremental learning generates an explainable set of rules which can be further used for human-robot interaction. Moreover, testing the proposed method using a publicly available dataset suggests wider applicability of the proposed incremental learning method outside the robotics field wherever an online incremental learner is required. The limitation of the proposed method is that it aims for handling discrete feature values." @default.
- W3204245305 created "2021-10-11" @default.
- W3204245305 creator A5002223668 @default.
- W3204245305 creator A5021403340 @default.
- W3204245305 creator A5036706480 @default.
- W3204245305 creator A5060921040 @default.
- W3204245305 date "2022-10-01" @default.
- W3204245305 modified "2023-09-30" @default.
- W3204245305 title "Argumentation-Based Online Incremental Learning" @default.
- W3204245305 cites W1539618770 @default.
- W3204245305 cites W1965944404 @default.
- W3204245305 cites W1965967298 @default.
- W3204245305 cites W1972226726 @default.
- W3204245305 cites W1977616509 @default.
- W3204245305 cites W2008790136 @default.
- W3204245305 cites W2026122225 @default.
- W3204245305 cites W2042230250 @default.
- W3204245305 cites W2043124856 @default.
- W3204245305 cites W2046213250 @default.
- W3204245305 cites W2055345160 @default.
- W3204245305 cites W2061879449 @default.
- W3204245305 cites W2070469928 @default.
- W3204245305 cites W2076337359 @default.
- W3204245305 cites W2104126268 @default.
- W3204245305 cites W2147067422 @default.
- W3204245305 cites W2162152641 @default.
- W3204245305 cites W2559955879 @default.
- W3204245305 cites W2586328120 @default.
- W3204245305 cites W2589020727 @default.
- W3204245305 cites W2626178658 @default.
- W3204245305 cites W2735439029 @default.
- W3204245305 cites W2739419429 @default.
- W3204245305 cites W2758219826 @default.
- W3204245305 cites W2773557179 @default.
- W3204245305 cites W2796194776 @default.
- W3204245305 cites W2904688694 @default.
- W3204245305 cites W2907585469 @default.
- W3204245305 cites W2913796694 @default.
- W3204245305 cites W2937908883 @default.
- W3204245305 cites W2941128398 @default.
- W3204245305 cites W2949944926 @default.
- W3204245305 cites W2955600320 @default.
- W3204245305 cites W2963081790 @default.
- W3204245305 cites W2963591087 @default.
- W3204245305 cites W2970929006 @default.
- W3204245305 cites W2973647490 @default.
- W3204245305 cites W2999399707 @default.
- W3204245305 cites W2999991706 @default.
- W3204245305 cites W3003753339 @default.
- W3204245305 cites W3086560451 @default.
- W3204245305 cites W3102015031 @default.
- W3204245305 cites W3144635834 @default.
- W3204245305 cites W4206530644 @default.
- W3204245305 cites W4213419683 @default.
- W3204245305 cites W4234760406 @default.
- W3204245305 cites W4236137412 @default.
- W3204245305 cites W4312272037 @default.
- W3204245305 doi "https://doi.org/10.1109/tase.2021.3120837" @default.
- W3204245305 hasPublicationYear "2022" @default.
- W3204245305 type Work @default.
- W3204245305 sameAs 3204245305 @default.
- W3204245305 citedByCount "2" @default.
- W3204245305 countsByYear W32042453052021 @default.
- W3204245305 countsByYear W32042453052022 @default.
- W3204245305 crossrefType "journal-article" @default.
- W3204245305 hasAuthorship W3204245305A5002223668 @default.
- W3204245305 hasAuthorship W3204245305A5021403340 @default.
- W3204245305 hasAuthorship W3204245305A5036706480 @default.
- W3204245305 hasAuthorship W3204245305A5060921040 @default.
- W3204245305 hasBestOaLocation W32042453052 @default.
- W3204245305 hasConcept C111472728 @default.
- W3204245305 hasConcept C11413529 @default.
- W3204245305 hasConcept C119857082 @default.
- W3204245305 hasConcept C124101348 @default.
- W3204245305 hasConcept C136764020 @default.
- W3204245305 hasConcept C138885662 @default.
- W3204245305 hasConcept C154945302 @default.
- W3204245305 hasConcept C177264268 @default.
- W3204245305 hasConcept C199360897 @default.
- W3204245305 hasConcept C25343380 @default.
- W3204245305 hasConcept C2778514511 @default.
- W3204245305 hasConcept C2780735816 @default.
- W3204245305 hasConcept C2986087404 @default.
- W3204245305 hasConcept C41008148 @default.
- W3204245305 hasConcept C48103436 @default.
- W3204245305 hasConcept C65059942 @default.
- W3204245305 hasConcept C77967617 @default.
- W3204245305 hasConcept C97541855 @default.
- W3204245305 hasConceptScore W3204245305C111472728 @default.
- W3204245305 hasConceptScore W3204245305C11413529 @default.
- W3204245305 hasConceptScore W3204245305C119857082 @default.
- W3204245305 hasConceptScore W3204245305C124101348 @default.
- W3204245305 hasConceptScore W3204245305C136764020 @default.
- W3204245305 hasConceptScore W3204245305C138885662 @default.
- W3204245305 hasConceptScore W3204245305C154945302 @default.
- W3204245305 hasConceptScore W3204245305C177264268 @default.
- W3204245305 hasConceptScore W3204245305C199360897 @default.
- W3204245305 hasConceptScore W3204245305C25343380 @default.