Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204251661> ?p ?o ?g. }
- W3204251661 endingPage "4837" @default.
- W3204251661 startingPage "4837" @default.
- W3204251661 abstract "Prostate cancer is a common cancer type in men, yet some of its traits are still under-explored. One reason for this is high molecular and morphological heterogeneity. The purpose of this study was to develop a method to gain new insights into the connection between morphological changes and underlying molecular patterns. We used artificial intelligence (AI) to analyze the morphology of seven hematoxylin and eosin (H&E)-stained prostatectomy slides from a patient with multi-focal prostate cancer. We also paired the slides with spatially resolved expression for thousands of genes obtained by a novel spatial transcriptomics (ST) technique. As both spaces are highly dimensional, we focused on dimensionality reduction before seeking associations between them. Consequently, we extracted morphological features from H&E images using an ensemble of pre-trained convolutional neural networks and proposed a workflow for dimensionality reduction. To summarize the ST data into genetic profiles, we used a previously proposed factor analysis. We found that the regions were automatically defined, outlined by unsupervised clustering, associated with independent manual annotations, in some cases, finding further relevant subdivisions. The morphological patterns were also correlated with molecular profiles and could predict the spatial variation of individual genes. This novel approach enables flexible unsupervised studies relating morphological and genetic heterogeneity using AI to be carried out." @default.
- W3204251661 created "2021-10-11" @default.
- W3204251661 creator A5003593517 @default.
- W3204251661 creator A5007565861 @default.
- W3204251661 creator A5015026244 @default.
- W3204251661 creator A5021740564 @default.
- W3204251661 creator A5028372092 @default.
- W3204251661 creator A5035054833 @default.
- W3204251661 creator A5040800642 @default.
- W3204251661 creator A5054656710 @default.
- W3204251661 creator A5060808871 @default.
- W3204251661 creator A5069504905 @default.
- W3204251661 creator A5085918736 @default.
- W3204251661 date "2021-09-28" @default.
- W3204251661 modified "2023-10-13" @default.
- W3204251661 title "Morphological Features Extracted by AI Associated with Spatial Transcriptomics in Prostate Cancer" @default.
- W3204251661 cites W1977653087 @default.
- W3204251661 cites W2011120797 @default.
- W3204251661 cites W2015159529 @default.
- W3204251661 cites W2074718434 @default.
- W3204251661 cites W2085487226 @default.
- W3204251661 cites W2126261185 @default.
- W3204251661 cites W2154557000 @default.
- W3204251661 cites W2159400887 @default.
- W3204251661 cites W2471536144 @default.
- W3204251661 cites W2719593130 @default.
- W3204251661 cites W2724544818 @default.
- W3204251661 cites W2732036031 @default.
- W3204251661 cites W2754209058 @default.
- W3204251661 cites W2808465642 @default.
- W3204251661 cites W2890411695 @default.
- W3204251661 cites W2914560454 @default.
- W3204251661 cites W2994000519 @default.
- W3204251661 cites W2999345636 @default.
- W3204251661 cites W2999399991 @default.
- W3204251661 cites W2999977864 @default.
- W3204251661 cites W3003753408 @default.
- W3204251661 cites W3009926465 @default.
- W3204251661 cites W3028450988 @default.
- W3204251661 cites W3032266082 @default.
- W3204251661 cites W3036882247 @default.
- W3204251661 cites W3092450854 @default.
- W3204251661 cites W3128646645 @default.
- W3204251661 cites W4214806444 @default.
- W3204251661 cites W4254360996 @default.
- W3204251661 doi "https://doi.org/10.3390/cancers13194837" @default.
- W3204251661 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8507756" @default.
- W3204251661 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34638322" @default.
- W3204251661 hasPublicationYear "2021" @default.
- W3204251661 type Work @default.
- W3204251661 sameAs 3204251661 @default.
- W3204251661 citedByCount "11" @default.
- W3204251661 countsByYear W32042516612022 @default.
- W3204251661 countsByYear W32042516612023 @default.
- W3204251661 crossrefType "journal-article" @default.
- W3204251661 hasAuthorship W3204251661A5003593517 @default.
- W3204251661 hasAuthorship W3204251661A5007565861 @default.
- W3204251661 hasAuthorship W3204251661A5015026244 @default.
- W3204251661 hasAuthorship W3204251661A5021740564 @default.
- W3204251661 hasAuthorship W3204251661A5028372092 @default.
- W3204251661 hasAuthorship W3204251661A5035054833 @default.
- W3204251661 hasAuthorship W3204251661A5040800642 @default.
- W3204251661 hasAuthorship W3204251661A5054656710 @default.
- W3204251661 hasAuthorship W3204251661A5060808871 @default.
- W3204251661 hasAuthorship W3204251661A5069504905 @default.
- W3204251661 hasAuthorship W3204251661A5085918736 @default.
- W3204251661 hasBestOaLocation W32042516611 @default.
- W3204251661 hasConcept C121608353 @default.
- W3204251661 hasConcept C153180895 @default.
- W3204251661 hasConcept C154945302 @default.
- W3204251661 hasConcept C2777522853 @default.
- W3204251661 hasConcept C2780192828 @default.
- W3204251661 hasConcept C41008148 @default.
- W3204251661 hasConcept C54355233 @default.
- W3204251661 hasConcept C70518039 @default.
- W3204251661 hasConcept C70721500 @default.
- W3204251661 hasConcept C73555534 @default.
- W3204251661 hasConcept C81363708 @default.
- W3204251661 hasConcept C86803240 @default.
- W3204251661 hasConceptScore W3204251661C121608353 @default.
- W3204251661 hasConceptScore W3204251661C153180895 @default.
- W3204251661 hasConceptScore W3204251661C154945302 @default.
- W3204251661 hasConceptScore W3204251661C2777522853 @default.
- W3204251661 hasConceptScore W3204251661C2780192828 @default.
- W3204251661 hasConceptScore W3204251661C41008148 @default.
- W3204251661 hasConceptScore W3204251661C54355233 @default.
- W3204251661 hasConceptScore W3204251661C70518039 @default.
- W3204251661 hasConceptScore W3204251661C70721500 @default.
- W3204251661 hasConceptScore W3204251661C73555534 @default.
- W3204251661 hasConceptScore W3204251661C81363708 @default.
- W3204251661 hasConceptScore W3204251661C86803240 @default.
- W3204251661 hasFunder F4320320940 @default.
- W3204251661 hasFunder F4320334678 @default.
- W3204251661 hasIssue "19" @default.
- W3204251661 hasLocation W32042516611 @default.
- W3204251661 hasLocation W32042516612 @default.
- W3204251661 hasLocation W32042516613 @default.
- W3204251661 hasLocation W32042516614 @default.