Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204255317> ?p ?o ?g. }
- W3204255317 endingPage "110213" @default.
- W3204255317 startingPage "110213" @default.
- W3204255317 abstract "Transfer learning has good ability to transfer knowledge for fault diagnosis under different working condition, while domain mismatches or domain shift can still occur during single-source domain transfer fault diagnosis. To alleviate the problem, a multi-source ensemble domain adaptation method is proposed for rotary machinery fault diagnosis. Firstly, multi-source and target domain anchor adapters are constructed based on class-central samples from multi-source domain. Secondly, multi-source ensemble domain adaptation transfer fault diagnosis model considering the mutual difference between multi-source domain is established to obtain multiple classifiers and prediction results. Then the classifiers with good performance are integrated to achieve final diagnosis model and results by ensemble of anchor adapters. Finally, the performance of the proposed method is verified by two experiments. The results show that the proposed method has ability to learn more comprehensive and general domain invariant diagnosis knowledge, significant diagnosis performance and robustness than other transfer learning methods." @default.
- W3204255317 created "2021-10-11" @default.
- W3204255317 creator A5009932903 @default.
- W3204255317 creator A5015797473 @default.
- W3204255317 creator A5022962081 @default.
- W3204255317 creator A5036519201 @default.
- W3204255317 creator A5070234553 @default.
- W3204255317 creator A5089345258 @default.
- W3204255317 date "2021-12-01" @default.
- W3204255317 modified "2023-09-27" @default.
- W3204255317 title "A multi-source ensemble domain adaptation method for rotary machine fault diagnosis" @default.
- W3204255317 cites W2096943734 @default.
- W3204255317 cites W2098775782 @default.
- W3204255317 cites W2100495367 @default.
- W3204255317 cites W2115403315 @default.
- W3204255317 cites W2145793758 @default.
- W3204255317 cites W2165698076 @default.
- W3204255317 cites W2219903032 @default.
- W3204255317 cites W2258884143 @default.
- W3204255317 cites W2281541037 @default.
- W3204255317 cites W2533186686 @default.
- W3204255317 cites W2601590138 @default.
- W3204255317 cites W2731372149 @default.
- W3204255317 cites W2736470268 @default.
- W3204255317 cites W2767234670 @default.
- W3204255317 cites W2810292802 @default.
- W3204255317 cites W2904218127 @default.
- W3204255317 cites W2907541186 @default.
- W3204255317 cites W2914298094 @default.
- W3204255317 cites W2918661724 @default.
- W3204255317 cites W2919666783 @default.
- W3204255317 cites W2945551885 @default.
- W3204255317 cites W2946048316 @default.
- W3204255317 cites W2957568672 @default.
- W3204255317 cites W2963693396 @default.
- W3204255317 cites W2964288524 @default.
- W3204255317 cites W2969736276 @default.
- W3204255317 cites W2977053225 @default.
- W3204255317 cites W2979655715 @default.
- W3204255317 cites W2981375875 @default.
- W3204255317 cites W2981982720 @default.
- W3204255317 cites W2995874909 @default.
- W3204255317 cites W2998506103 @default.
- W3204255317 cites W2999406639 @default.
- W3204255317 cites W3007806969 @default.
- W3204255317 cites W3017630871 @default.
- W3204255317 cites W3019762726 @default.
- W3204255317 cites W3026006566 @default.
- W3204255317 cites W3036403470 @default.
- W3204255317 cites W3048796145 @default.
- W3204255317 cites W3083358932 @default.
- W3204255317 cites W3169790327 @default.
- W3204255317 doi "https://doi.org/10.1016/j.measurement.2021.110213" @default.
- W3204255317 hasPublicationYear "2021" @default.
- W3204255317 type Work @default.
- W3204255317 sameAs 3204255317 @default.
- W3204255317 citedByCount "24" @default.
- W3204255317 countsByYear W32042553172022 @default.
- W3204255317 countsByYear W32042553172023 @default.
- W3204255317 crossrefType "journal-article" @default.
- W3204255317 hasAuthorship W3204255317A5009932903 @default.
- W3204255317 hasAuthorship W3204255317A5015797473 @default.
- W3204255317 hasAuthorship W3204255317A5022962081 @default.
- W3204255317 hasAuthorship W3204255317A5036519201 @default.
- W3204255317 hasAuthorship W3204255317A5070234553 @default.
- W3204255317 hasAuthorship W3204255317A5089345258 @default.
- W3204255317 hasConcept C104317684 @default.
- W3204255317 hasConcept C119857082 @default.
- W3204255317 hasConcept C127313418 @default.
- W3204255317 hasConcept C134306372 @default.
- W3204255317 hasConcept C150899416 @default.
- W3204255317 hasConcept C153180895 @default.
- W3204255317 hasConcept C154945302 @default.
- W3204255317 hasConcept C165205528 @default.
- W3204255317 hasConcept C175551986 @default.
- W3204255317 hasConcept C185592680 @default.
- W3204255317 hasConcept C2776434776 @default.
- W3204255317 hasConcept C33923547 @default.
- W3204255317 hasConcept C36503486 @default.
- W3204255317 hasConcept C41008148 @default.
- W3204255317 hasConcept C45942800 @default.
- W3204255317 hasConcept C55493867 @default.
- W3204255317 hasConcept C63479239 @default.
- W3204255317 hasConcept C95623464 @default.
- W3204255317 hasConceptScore W3204255317C104317684 @default.
- W3204255317 hasConceptScore W3204255317C119857082 @default.
- W3204255317 hasConceptScore W3204255317C127313418 @default.
- W3204255317 hasConceptScore W3204255317C134306372 @default.
- W3204255317 hasConceptScore W3204255317C150899416 @default.
- W3204255317 hasConceptScore W3204255317C153180895 @default.
- W3204255317 hasConceptScore W3204255317C154945302 @default.
- W3204255317 hasConceptScore W3204255317C165205528 @default.
- W3204255317 hasConceptScore W3204255317C175551986 @default.
- W3204255317 hasConceptScore W3204255317C185592680 @default.
- W3204255317 hasConceptScore W3204255317C2776434776 @default.
- W3204255317 hasConceptScore W3204255317C33923547 @default.
- W3204255317 hasConceptScore W3204255317C36503486 @default.
- W3204255317 hasConceptScore W3204255317C41008148 @default.