Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204255783> ?p ?o ?g. }
- W3204255783 abstract "Predicting hepatocellular carcinoma (HCC) prognosis is important for treatment selection, and it is increasingly interesting to predict prognosis through gene expression data. Currently, the prognosis remains of low accuracy due to the high dimension but small sample size of liver cancer omics data. In previous studies, a transfer learning strategy has been developed by pre-training models on similar cancer types and then fine-tuning the pre-trained models on the target dataset. However, transfer learning has limited performance since other cancer types are similar at different levels, and it is not trivial to balance the relations with different cancer types.Here, we propose an adaptive transfer-learning-based deep Cox neural network (ATRCN), where cancers are represented by 12 phenotype and 10 genotype features, and suitable cancers were adaptively selected for model pre-training. In this way, the pre-trained model can learn valuable prior knowledge from other cancer types while reducing the biases.ATRCN chose pancreatic and stomach adenocarcinomas as the pre-training cancers, and the experiments indicated that our method improved the C-index of 3.8% by comparing with traditional transfer learning methods. The independent tests on three additional HCC datasets proved the robustness of our model. Based on the divided risk subgroups, we identified 10 HCC prognostic markers, including one new prognostic marker, TTC36. Further wet experiments indicated that TTC36 is associated with the progression of liver cancer cells.These results proved that our proposed deep-learning-based method for HCC prognosis prediction is robust, accurate, and biologically meaningful." @default.
- W3204255783 created "2021-10-11" @default.
- W3204255783 creator A5000895400 @default.
- W3204255783 creator A5006078127 @default.
- W3204255783 creator A5018469820 @default.
- W3204255783 creator A5036654749 @default.
- W3204255783 creator A5041973254 @default.
- W3204255783 creator A5049635455 @default.
- W3204255783 creator A5056181358 @default.
- W3204255783 creator A5076162565 @default.
- W3204255783 date "2021-09-27" @default.
- W3204255783 modified "2023-09-30" @default.
- W3204255783 title "An Adaptive Transfer-Learning-Based Deep Cox Neural Network for Hepatocellular Carcinoma Prognosis Prediction" @default.
- W3204255783 cites W1760208176 @default.
- W3204255783 cites W1965801346 @default.
- W3204255783 cites W1974076946 @default.
- W3204255783 cites W2000336618 @default.
- W3204255783 cites W2009671859 @default.
- W3204255783 cites W2019546041 @default.
- W3204255783 cites W2021733365 @default.
- W3204255783 cites W2027847170 @default.
- W3204255783 cites W2032600604 @default.
- W3204255783 cites W2039156863 @default.
- W3204255783 cites W2075105255 @default.
- W3204255783 cites W2117395419 @default.
- W3204255783 cites W2146512944 @default.
- W3204255783 cites W2157076315 @default.
- W3204255783 cites W2324080174 @default.
- W3204255783 cites W2585311025 @default.
- W3204255783 cites W2696801991 @default.
- W3204255783 cites W2753919178 @default.
- W3204255783 cites W2765219164 @default.
- W3204255783 cites W2795441251 @default.
- W3204255783 cites W2889646458 @default.
- W3204255783 cites W2892452712 @default.
- W3204255783 cites W2905556318 @default.
- W3204255783 cites W2906032577 @default.
- W3204255783 cites W292347624 @default.
- W3204255783 cites W2928842276 @default.
- W3204255783 cites W2943942704 @default.
- W3204255783 cites W2947300610 @default.
- W3204255783 cites W2951209146 @default.
- W3204255783 cites W2954499361 @default.
- W3204255783 cites W2977991537 @default.
- W3204255783 cites W3040723250 @default.
- W3204255783 cites W3134082987 @default.
- W3204255783 cites W3135117849 @default.
- W3204255783 cites W3147894994 @default.
- W3204255783 cites W3163443268 @default.
- W3204255783 doi "https://doi.org/10.3389/fonc.2021.692774" @default.
- W3204255783 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8504135" @default.
- W3204255783 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34646759" @default.
- W3204255783 hasPublicationYear "2021" @default.
- W3204255783 type Work @default.
- W3204255783 sameAs 3204255783 @default.
- W3204255783 citedByCount "7" @default.
- W3204255783 countsByYear W32042557832021 @default.
- W3204255783 countsByYear W32042557832022 @default.
- W3204255783 countsByYear W32042557832023 @default.
- W3204255783 crossrefType "journal-article" @default.
- W3204255783 hasAuthorship W3204255783A5000895400 @default.
- W3204255783 hasAuthorship W3204255783A5006078127 @default.
- W3204255783 hasAuthorship W3204255783A5018469820 @default.
- W3204255783 hasAuthorship W3204255783A5036654749 @default.
- W3204255783 hasAuthorship W3204255783A5041973254 @default.
- W3204255783 hasAuthorship W3204255783A5049635455 @default.
- W3204255783 hasAuthorship W3204255783A5056181358 @default.
- W3204255783 hasAuthorship W3204255783A5076162565 @default.
- W3204255783 hasBestOaLocation W32042557831 @default.
- W3204255783 hasConcept C104317684 @default.
- W3204255783 hasConcept C108583219 @default.
- W3204255783 hasConcept C119857082 @default.
- W3204255783 hasConcept C121608353 @default.
- W3204255783 hasConcept C126322002 @default.
- W3204255783 hasConcept C143998085 @default.
- W3204255783 hasConcept C150899416 @default.
- W3204255783 hasConcept C154945302 @default.
- W3204255783 hasConcept C2776231280 @default.
- W3204255783 hasConcept C2778019345 @default.
- W3204255783 hasConcept C2780210213 @default.
- W3204255783 hasConcept C41008148 @default.
- W3204255783 hasConcept C50382708 @default.
- W3204255783 hasConcept C50644808 @default.
- W3204255783 hasConcept C55493867 @default.
- W3204255783 hasConcept C63479239 @default.
- W3204255783 hasConcept C71924100 @default.
- W3204255783 hasConcept C86803240 @default.
- W3204255783 hasConceptScore W3204255783C104317684 @default.
- W3204255783 hasConceptScore W3204255783C108583219 @default.
- W3204255783 hasConceptScore W3204255783C119857082 @default.
- W3204255783 hasConceptScore W3204255783C121608353 @default.
- W3204255783 hasConceptScore W3204255783C126322002 @default.
- W3204255783 hasConceptScore W3204255783C143998085 @default.
- W3204255783 hasConceptScore W3204255783C150899416 @default.
- W3204255783 hasConceptScore W3204255783C154945302 @default.
- W3204255783 hasConceptScore W3204255783C2776231280 @default.
- W3204255783 hasConceptScore W3204255783C2778019345 @default.
- W3204255783 hasConceptScore W3204255783C2780210213 @default.
- W3204255783 hasConceptScore W3204255783C41008148 @default.
- W3204255783 hasConceptScore W3204255783C50382708 @default.