Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204257304> ?p ?o ?g. }
- W3204257304 abstract "The accurate identification of apple leaf diseases is of great significance for controlling the spread of diseases and ensuring the healthy and stable development of the apple industry. In order to improve detection accuracy and efficiency, a deep learning model, which is called the Coordination Attention EfficientNet (CA-ENet), is proposed to identify different apple diseases. First, a coordinate attention block is integrated into the EfficientNet-B4 network, which embedded the spatial location information of the feature by channel attention to ensure that the model can learn both the channel and spatial location information of important features. Then, a depth-wise separable convolution is applied to the convolution module to reduce the number of parameters, and the h-swish activation function is introduced to achieve the fast and easy to quantify the process. Afterward, 5,170 images are collected in the field environment at the apple planting base of the Northwest A&F University, while 3,000 images are acquired from the PlantVillage public data set. Also, image augmentation techniques are used to generate an Apple Leaf Disease Identification Data set (ALDID), which contains 81,700 images. The experimental results show that the accuracy of the CA-ENet is 98.92% on the ALDID, and the average F1-score reaches .988, which is better than those of common models such as the ResNet-152, DenseNet-264, and ResNeXt-101. The generated test dataset is used to test the anti-interference ability of the model. The results show that the proposed method can achieve competitive performance on the apple disease identification task." @default.
- W3204257304 created "2021-10-11" @default.
- W3204257304 creator A5011129309 @default.
- W3204257304 creator A5027235926 @default.
- W3204257304 creator A5042515438 @default.
- W3204257304 creator A5053102526 @default.
- W3204257304 creator A5074195514 @default.
- W3204257304 creator A5083017878 @default.
- W3204257304 date "2021-09-28" @default.
- W3204257304 modified "2023-10-13" @default.
- W3204257304 title "Identification of Apple Leaf Diseases by Improved Deep Convolutional Neural Networks With an Attention Mechanism" @default.
- W3204257304 cites W1980475594 @default.
- W3204257304 cites W2014383842 @default.
- W3204257304 cites W2069826067 @default.
- W3204257304 cites W2124664712 @default.
- W3204257304 cites W2194775991 @default.
- W3204257304 cites W2531409750 @default.
- W3204257304 cites W2549139847 @default.
- W3204257304 cites W2561873278 @default.
- W3204257304 cites W2574206596 @default.
- W3204257304 cites W2752782242 @default.
- W3204257304 cites W2775383661 @default.
- W3204257304 cites W2776705292 @default.
- W3204257304 cites W2804426336 @default.
- W3204257304 cites W2922143761 @default.
- W3204257304 cites W2923504698 @default.
- W3204257304 cites W2963125010 @default.
- W3204257304 cites W2963163009 @default.
- W3204257304 cites W2963420686 @default.
- W3204257304 cites W2963446712 @default.
- W3204257304 cites W2982083293 @default.
- W3204257304 cites W2987984071 @default.
- W3204257304 cites W3004794679 @default.
- W3204257304 cites W3037088790 @default.
- W3204257304 cites W3043813914 @default.
- W3204257304 cites W3081966421 @default.
- W3204257304 cites W3084116196 @default.
- W3204257304 cites W639708223 @default.
- W3204257304 doi "https://doi.org/10.3389/fpls.2021.723294" @default.
- W3204257304 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8505739" @default.
- W3204257304 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34650580" @default.
- W3204257304 hasPublicationYear "2021" @default.
- W3204257304 type Work @default.
- W3204257304 sameAs 3204257304 @default.
- W3204257304 citedByCount "20" @default.
- W3204257304 countsByYear W32042573042021 @default.
- W3204257304 countsByYear W32042573042022 @default.
- W3204257304 countsByYear W32042573042023 @default.
- W3204257304 crossrefType "journal-article" @default.
- W3204257304 hasAuthorship W3204257304A5011129309 @default.
- W3204257304 hasAuthorship W3204257304A5027235926 @default.
- W3204257304 hasAuthorship W3204257304A5042515438 @default.
- W3204257304 hasAuthorship W3204257304A5053102526 @default.
- W3204257304 hasAuthorship W3204257304A5074195514 @default.
- W3204257304 hasAuthorship W3204257304A5083017878 @default.
- W3204257304 hasBestOaLocation W32042573041 @default.
- W3204257304 hasConcept C108583219 @default.
- W3204257304 hasConcept C111919701 @default.
- W3204257304 hasConcept C116834253 @default.
- W3204257304 hasConcept C127162648 @default.
- W3204257304 hasConcept C138885662 @default.
- W3204257304 hasConcept C14036430 @default.
- W3204257304 hasConcept C153180895 @default.
- W3204257304 hasConcept C154945302 @default.
- W3204257304 hasConcept C169903167 @default.
- W3204257304 hasConcept C177264268 @default.
- W3204257304 hasConcept C199360897 @default.
- W3204257304 hasConcept C202444582 @default.
- W3204257304 hasConcept C2524010 @default.
- W3204257304 hasConcept C2776401178 @default.
- W3204257304 hasConcept C2777210771 @default.
- W3204257304 hasConcept C31258907 @default.
- W3204257304 hasConcept C32022120 @default.
- W3204257304 hasConcept C33923547 @default.
- W3204257304 hasConcept C41008148 @default.
- W3204257304 hasConcept C41895202 @default.
- W3204257304 hasConcept C45347329 @default.
- W3204257304 hasConcept C50644808 @default.
- W3204257304 hasConcept C59822182 @default.
- W3204257304 hasConcept C78458016 @default.
- W3204257304 hasConcept C81363708 @default.
- W3204257304 hasConcept C86803240 @default.
- W3204257304 hasConcept C9652623 @default.
- W3204257304 hasConcept C98045186 @default.
- W3204257304 hasConceptScore W3204257304C108583219 @default.
- W3204257304 hasConceptScore W3204257304C111919701 @default.
- W3204257304 hasConceptScore W3204257304C116834253 @default.
- W3204257304 hasConceptScore W3204257304C127162648 @default.
- W3204257304 hasConceptScore W3204257304C138885662 @default.
- W3204257304 hasConceptScore W3204257304C14036430 @default.
- W3204257304 hasConceptScore W3204257304C153180895 @default.
- W3204257304 hasConceptScore W3204257304C154945302 @default.
- W3204257304 hasConceptScore W3204257304C169903167 @default.
- W3204257304 hasConceptScore W3204257304C177264268 @default.
- W3204257304 hasConceptScore W3204257304C199360897 @default.
- W3204257304 hasConceptScore W3204257304C202444582 @default.
- W3204257304 hasConceptScore W3204257304C2524010 @default.
- W3204257304 hasConceptScore W3204257304C2776401178 @default.
- W3204257304 hasConceptScore W3204257304C2777210771 @default.
- W3204257304 hasConceptScore W3204257304C31258907 @default.