Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204257416> ?p ?o ?g. }
- W3204257416 abstract "We study the problem of finding algebraically stable models for non-invertible holomorphic fixed point germs <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f colon left-parenthesis upper X comma x 0 right-parenthesis right-arrow left-parenthesis upper X comma x 0 right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:<!-- : --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=false>)</mml:mo> <mml:mo stretchy=false>→<!-- → --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>fcolon (X,x_0)to (X,x_0)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a complex surface having <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=x 0> <mml:semantics> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:annotation encoding=application/x-tex>x_0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as a normal singularity. We prove that as long as <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=x 0> <mml:semantics> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:annotation encoding=application/x-tex>x_0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is not a cusp singularity of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then it is possible to find arbitrarily high modifications <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=pi colon upper X Subscript pi Baseline right-arrow left-parenthesis upper X comma x 0 right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>π<!-- π --></mml:mi> <mml:mo>:<!-- : --></mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>π<!-- π --></mml:mi> </mml:msub> <mml:mo stretchy=false>→<!-- → --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>pi colon X_pi to (X,x_0)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the dynamics of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=application/x-tex>f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (or more precisely of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f Superscript upper N> <mml:semantics> <mml:msup> <mml:mi>f</mml:mi> <mml:mi>N</mml:mi> </mml:msup> <mml:annotation encoding=application/x-tex>f^N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper N> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=application/x-tex>N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> big enough) on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X Subscript pi> <mml:semantics> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>π<!-- π --></mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>X_pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is algebraically stable. This result is proved by understanding the dynamics induced by <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=application/x-tex>f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on a space of valuations associated to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; in fact, we are able to give a strong classification of all the possible dynamical behaviors of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=application/x-tex>f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on this valuation space. We also deduce a precise description of the behavior of the sequence of attraction rates for the iterates of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=application/x-tex>f</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Finally, we prove that in this setting the first dynamical degree is always a quadratic integer." @default.
- W3204257416 created "2021-10-11" @default.
- W3204257416 creator A5023228531 @default.
- W3204257416 creator A5042231592 @default.
- W3204257416 date "2021-07-01" @default.
- W3204257416 modified "2023-09-24" @default.
- W3204257416 title "Local dynamics of non-invertible maps near normal surface singularities" @default.
- W3204257416 cites W1549562143 @default.
- W3204257416 cites W1580842374 @default.
- W3204257416 cites W1585265186 @default.
- W3204257416 cites W1657274748 @default.
- W3204257416 cites W1809207856 @default.
- W3204257416 cites W1971092109 @default.
- W3204257416 cites W1978430241 @default.
- W3204257416 cites W1981125861 @default.
- W3204257416 cites W1987822255 @default.
- W3204257416 cites W1989130557 @default.
- W3204257416 cites W1998888083 @default.
- W3204257416 cites W1999795211 @default.
- W3204257416 cites W2005379231 @default.
- W3204257416 cites W2005999975 @default.
- W3204257416 cites W2013033122 @default.
- W3204257416 cites W2024348588 @default.
- W3204257416 cites W2024374236 @default.
- W3204257416 cites W2031019391 @default.
- W3204257416 cites W2037731932 @default.
- W3204257416 cites W2039442225 @default.
- W3204257416 cites W2046284830 @default.
- W3204257416 cites W2056594782 @default.
- W3204257416 cites W2061510313 @default.
- W3204257416 cites W2061665805 @default.
- W3204257416 cites W2062691274 @default.
- W3204257416 cites W2078970705 @default.
- W3204257416 cites W2087098163 @default.
- W3204257416 cites W2110467235 @default.
- W3204257416 cites W2129224453 @default.
- W3204257416 cites W2133697629 @default.
- W3204257416 cites W2157152028 @default.
- W3204257416 cites W2157837200 @default.
- W3204257416 cites W2164308596 @default.
- W3204257416 cites W2165129252 @default.
- W3204257416 cites W2292903622 @default.
- W3204257416 cites W2314730749 @default.
- W3204257416 cites W2323369025 @default.
- W3204257416 cites W2332699105 @default.
- W3204257416 cites W2498144018 @default.
- W3204257416 cites W2765445450 @default.
- W3204257416 cites W2789014129 @default.
- W3204257416 cites W2911861088 @default.
- W3204257416 cites W2962798991 @default.
- W3204257416 cites W2962874697 @default.
- W3204257416 cites W2962919489 @default.
- W3204257416 cites W2963135070 @default.
- W3204257416 cites W2963560104 @default.
- W3204257416 cites W2963944257 @default.
- W3204257416 cites W2964222522 @default.
- W3204257416 cites W2964258881 @default.
- W3204257416 cites W3099426327 @default.
- W3204257416 cites W3102075949 @default.
- W3204257416 cites W3102851420 @default.
- W3204257416 cites W3104941178 @default.
- W3204257416 cites W3125278656 @default.
- W3204257416 cites W3177411022 @default.
- W3204257416 cites W4234672042 @default.
- W3204257416 cites W4238686823 @default.
- W3204257416 cites W4253111115 @default.
- W3204257416 cites W4255406206 @default.
- W3204257416 cites W644598453 @default.
- W3204257416 doi "https://doi.org/10.1090/memo/1337" @default.
- W3204257416 hasPublicationYear "2021" @default.
- W3204257416 type Work @default.
- W3204257416 sameAs 3204257416 @default.
- W3204257416 citedByCount "2" @default.
- W3204257416 countsByYear W32042574162022 @default.
- W3204257416 crossrefType "journal-article" @default.
- W3204257416 hasAuthorship W3204257416A5023228531 @default.
- W3204257416 hasAuthorship W3204257416A5042231592 @default.
- W3204257416 hasBestOaLocation W32042574161 @default.
- W3204257416 hasConcept C11413529 @default.
- W3204257416 hasConcept C154945302 @default.
- W3204257416 hasConcept C41008148 @default.
- W3204257416 hasConceptScore W3204257416C11413529 @default.
- W3204257416 hasConceptScore W3204257416C154945302 @default.
- W3204257416 hasConceptScore W3204257416C41008148 @default.
- W3204257416 hasIssue "1337" @default.
- W3204257416 hasLocation W32042574161 @default.
- W3204257416 hasLocation W32042574162 @default.
- W3204257416 hasOpenAccess W3204257416 @default.
- W3204257416 hasPrimaryLocation W32042574161 @default.
- W3204257416 hasRelatedWork W2051487156 @default.
- W3204257416 hasRelatedWork W2351491280 @default.
- W3204257416 hasRelatedWork W2358668433 @default.
- W3204257416 hasRelatedWork W2371447506 @default.
- W3204257416 hasRelatedWork W2386767533 @default.
- W3204257416 hasRelatedWork W2390279801 @default.
- W3204257416 hasRelatedWork W2748952813 @default.
- W3204257416 hasRelatedWork W2899084033 @default.
- W3204257416 hasRelatedWork W303980170 @default.
- W3204257416 hasRelatedWork W3107474891 @default.
- W3204257416 hasVolume "272" @default.