Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204262095> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W3204262095 abstract "Let $q^k n^2$ be an odd perfect number with special prime $q$. Extending previous work of the authors, we prove that the inequality $n t > 2^r$, or (b) $n > 2^r > t$. We also prove that the estimate $n^2 - q^k > 2n$ holds. We can also improve this unconditional estimate to $n^2 - q^k > {n^2}/3$." @default.
- W3204262095 created "2021-10-11" @default.
- W3204262095 creator A5032927507 @default.
- W3204262095 creator A5054486850 @default.
- W3204262095 date "2021-09-20" @default.
- W3204262095 modified "2023-09-27" @default.
- W3204262095 title "On the quantity $n^2 - q^k$ where $q^k n^2$ is an odd perfect number -- Part II" @default.
- W3204262095 cites W1835973143 @default.
- W3204262095 cites W1902472314 @default.
- W3204262095 cites W2150101286 @default.
- W3204262095 cites W2265703274 @default.
- W3204262095 cites W2314111557 @default.
- W3204262095 cites W2908578566 @default.
- W3204262095 cites W2962828028 @default.
- W3204262095 cites W3128203706 @default.
- W3204262095 hasPublicationYear "2021" @default.
- W3204262095 type Work @default.
- W3204262095 sameAs 3204262095 @default.
- W3204262095 citedByCount "0" @default.
- W3204262095 crossrefType "posted-content" @default.
- W3204262095 hasAuthorship W3204262095A5032927507 @default.
- W3204262095 hasAuthorship W3204262095A5054486850 @default.
- W3204262095 hasConcept C114614502 @default.
- W3204262095 hasConcept C118615104 @default.
- W3204262095 hasConcept C121332964 @default.
- W3204262095 hasConcept C184992742 @default.
- W3204262095 hasConcept C33923547 @default.
- W3204262095 hasConceptScore W3204262095C114614502 @default.
- W3204262095 hasConceptScore W3204262095C118615104 @default.
- W3204262095 hasConceptScore W3204262095C121332964 @default.
- W3204262095 hasConceptScore W3204262095C184992742 @default.
- W3204262095 hasConceptScore W3204262095C33923547 @default.
- W3204262095 hasLocation W32042620951 @default.
- W3204262095 hasOpenAccess W3204262095 @default.
- W3204262095 hasPrimaryLocation W32042620951 @default.
- W3204262095 hasRelatedWork W1685868051 @default.
- W3204262095 hasRelatedWork W1902472314 @default.
- W3204262095 hasRelatedWork W1924996053 @default.
- W3204262095 hasRelatedWork W1964566604 @default.
- W3204262095 hasRelatedWork W2003009108 @default.
- W3204262095 hasRelatedWork W2053362810 @default.
- W3204262095 hasRelatedWork W2083855004 @default.
- W3204262095 hasRelatedWork W2108816553 @default.
- W3204262095 hasRelatedWork W2149204826 @default.
- W3204262095 hasRelatedWork W2265703274 @default.
- W3204262095 hasRelatedWork W2355135012 @default.
- W3204262095 hasRelatedWork W2501984832 @default.
- W3204262095 hasRelatedWork W2503222877 @default.
- W3204262095 hasRelatedWork W2524627466 @default.
- W3204262095 hasRelatedWork W2529740118 @default.
- W3204262095 hasRelatedWork W2602768380 @default.
- W3204262095 hasRelatedWork W2753986856 @default.
- W3204262095 hasRelatedWork W2963156070 @default.
- W3204262095 hasRelatedWork W3129621902 @default.
- W3204262095 hasRelatedWork W3193483356 @default.
- W3204262095 isParatext "false" @default.
- W3204262095 isRetracted "false" @default.
- W3204262095 magId "3204262095" @default.
- W3204262095 workType "article" @default.