Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204271852> ?p ?o ?g. }
- W3204271852 endingPage "e0258178" @default.
- W3204271852 startingPage "e0258178" @default.
- W3204271852 abstract "Measurements of the physical outputs of speech—vocal tract geometry and acoustic energy—are high-dimensional, but linguistic theories posit a low-dimensional set of categories such as phonemes and phrase types. How can it be determined when and where in high-dimensional articulatory and acoustic signals there is information related to theoretical categories? For a variety of reasons, it is problematic to directly quantify mutual information between hypothesized categories and signals. To address this issue, a multi-scale analysis method is proposed for localizing category-related information in an ensemble of speech signals using machine learning algorithms. By analyzing how classification accuracy on unseen data varies as the temporal extent of training input is systematically restricted, inferences can be drawn regarding the temporal distribution of category-related information. The method can also be used to investigate redundancy between subsets of signal dimensions. Two types of theoretical categories are examined in this paper: phonemic/gestural categories and syntactic relative clause categories. Moreover, two different machine learning algorithms were examined: linear discriminant analysis and neural networks with long short-term memory units. Both algorithms detected category-related information earlier and later in signals than would be expected given standard theoretical assumptions about when linguistic categories should influence speech. The neural network algorithm was able to identify category-related information to a greater extent than the discriminant analyses." @default.
- W3204271852 created "2021-10-11" @default.
- W3204271852 creator A5008035014 @default.
- W3204271852 creator A5019965781 @default.
- W3204271852 creator A5042187104 @default.
- W3204271852 date "2021-10-01" @default.
- W3204271852 modified "2023-10-02" @default.
- W3204271852 title "Localizing category-related information in speech with multi-scale analyses" @default.
- W3204271852 cites W1577380574 @default.
- W3204271852 cites W183625566 @default.
- W3204271852 cites W1971118325 @default.
- W3204271852 cites W1971562501 @default.
- W3204271852 cites W1987822316 @default.
- W3204271852 cites W1990378153 @default.
- W3204271852 cites W1997976387 @default.
- W3204271852 cites W2011934537 @default.
- W3204271852 cites W2037504148 @default.
- W3204271852 cites W2041782669 @default.
- W3204271852 cites W2045927451 @default.
- W3204271852 cites W2047959047 @default.
- W3204271852 cites W2048449762 @default.
- W3204271852 cites W2055273782 @default.
- W3204271852 cites W2058230555 @default.
- W3204271852 cites W2072349691 @default.
- W3204271852 cites W2076608847 @default.
- W3204271852 cites W2083278075 @default.
- W3204271852 cites W2105594594 @default.
- W3204271852 cites W2114771311 @default.
- W3204271852 cites W2123353762 @default.
- W3204271852 cites W2137931821 @default.
- W3204271852 cites W2144595485 @default.
- W3204271852 cites W2195506630 @default.
- W3204271852 cites W2205866307 @default.
- W3204271852 cites W2222445509 @default.
- W3204271852 cites W2793593753 @default.
- W3204271852 cites W2884343086 @default.
- W3204271852 cites W2919115771 @default.
- W3204271852 cites W2971818789 @default.
- W3204271852 cites W2993627123 @default.
- W3204271852 cites W2993993911 @default.
- W3204271852 cites W2995567445 @default.
- W3204271852 cites W3044067850 @default.
- W3204271852 cites W3128450757 @default.
- W3204271852 cites W4232693094 @default.
- W3204271852 doi "https://doi.org/10.1371/journal.pone.0258178" @default.
- W3204271852 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8486085" @default.
- W3204271852 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34597350" @default.
- W3204271852 hasPublicationYear "2021" @default.
- W3204271852 type Work @default.
- W3204271852 sameAs 3204271852 @default.
- W3204271852 citedByCount "4" @default.
- W3204271852 countsByYear W32042718522022 @default.
- W3204271852 countsByYear W32042718522023 @default.
- W3204271852 crossrefType "journal-article" @default.
- W3204271852 hasAuthorship W3204271852A5008035014 @default.
- W3204271852 hasAuthorship W3204271852A5019965781 @default.
- W3204271852 hasAuthorship W3204271852A5042187104 @default.
- W3204271852 hasBestOaLocation W32042718521 @default.
- W3204271852 hasConcept C111919701 @default.
- W3204271852 hasConcept C121332964 @default.
- W3204271852 hasConcept C152124472 @default.
- W3204271852 hasConcept C152139883 @default.
- W3204271852 hasConcept C153180895 @default.
- W3204271852 hasConcept C154945302 @default.
- W3204271852 hasConcept C177264268 @default.
- W3204271852 hasConcept C199360897 @default.
- W3204271852 hasConcept C204321447 @default.
- W3204271852 hasConcept C2776224158 @default.
- W3204271852 hasConcept C2778755073 @default.
- W3204271852 hasConcept C28490314 @default.
- W3204271852 hasConcept C41008148 @default.
- W3204271852 hasConcept C47401133 @default.
- W3204271852 hasConcept C50644808 @default.
- W3204271852 hasConcept C62520636 @default.
- W3204271852 hasConcept C69738355 @default.
- W3204271852 hasConcept C78397625 @default.
- W3204271852 hasConceptScore W3204271852C111919701 @default.
- W3204271852 hasConceptScore W3204271852C121332964 @default.
- W3204271852 hasConceptScore W3204271852C152124472 @default.
- W3204271852 hasConceptScore W3204271852C152139883 @default.
- W3204271852 hasConceptScore W3204271852C153180895 @default.
- W3204271852 hasConceptScore W3204271852C154945302 @default.
- W3204271852 hasConceptScore W3204271852C177264268 @default.
- W3204271852 hasConceptScore W3204271852C199360897 @default.
- W3204271852 hasConceptScore W3204271852C204321447 @default.
- W3204271852 hasConceptScore W3204271852C2776224158 @default.
- W3204271852 hasConceptScore W3204271852C2778755073 @default.
- W3204271852 hasConceptScore W3204271852C28490314 @default.
- W3204271852 hasConceptScore W3204271852C41008148 @default.
- W3204271852 hasConceptScore W3204271852C47401133 @default.
- W3204271852 hasConceptScore W3204271852C50644808 @default.
- W3204271852 hasConceptScore W3204271852C62520636 @default.
- W3204271852 hasConceptScore W3204271852C69738355 @default.
- W3204271852 hasConceptScore W3204271852C78397625 @default.
- W3204271852 hasIssue "10" @default.
- W3204271852 hasLocation W32042718521 @default.
- W3204271852 hasLocation W32042718522 @default.
- W3204271852 hasLocation W32042718523 @default.