Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204275552> ?p ?o ?g. }
- W3204275552 abstract "In recent years, with the advancements in information and communication technology, different emerging on-demand shared mobility services have been introduced as innovative solutions in the low-density areas, including on-demand transit (ODT), mobility on-demand (MOD) transit, and crowdsourced mobility services. However, due to their infancy, there is a strong need to understand and model the demand for these services. In this study, we developed trip production and distribution models for ODT services at Dissemination areas (DA) level using four machine learning algorithms: Random Forest (RF), Bagging, Artificial Neural Network (ANN) and Deep Neural Network (DNN). The data used in the modelling process were acquired from Belleville's ODT operational data and 2016 census data. Bayesian optimalization approach was used to find the optimal architecture of the adopted algorithms. Moreover, post-hoc model was employed to interpret the predictions and examine the importance of the explanatory variables. The results showed that the land-use type was the most important variable in the trip production model. On the other hand, the demographic characteristics of the trip destination were the most important variables in the trip distribution model. Moreover, the results revealed that higher trip distribution levels are expected between dissemination areas with commercial/industrial land-use type and dissemination areas with high-density residential land-use. Our findings suggest that the performance of ODT services can be further enhanced by (a) locating idle vehicles in the neighbourhoods with commercial/industrial land-use and (b) using the spatio-temporal demand models obtained in this work to continuously update the operating fleet size." @default.
- W3204275552 created "2021-10-11" @default.
- W3204275552 creator A5048496396 @default.
- W3204275552 creator A5062795612 @default.
- W3204275552 date "2020-10-27" @default.
- W3204275552 modified "2023-10-03" @default.
- W3204275552 title "Interpretable Data-Driven Demand Modelling for On-Demand Transit Services" @default.
- W3204275552 cites W1582330347 @default.
- W3204275552 cites W1976027313 @default.
- W3204275552 cites W1980078184 @default.
- W3204275552 cites W1983865151 @default.
- W3204275552 cites W1990653740 @default.
- W3204275552 cites W1992852093 @default.
- W3204275552 cites W2026057847 @default.
- W3204275552 cites W2059515884 @default.
- W3204275552 cites W2087141873 @default.
- W3204275552 cites W2106577732 @default.
- W3204275552 cites W2111162011 @default.
- W3204275552 cites W2131241448 @default.
- W3204275552 cites W2131527844 @default.
- W3204275552 cites W2419366211 @default.
- W3204275552 cites W2507380695 @default.
- W3204275552 cites W2589595498 @default.
- W3204275552 cites W2602173181 @default.
- W3204275552 cites W2604877585 @default.
- W3204275552 cites W2621019941 @default.
- W3204275552 cites W2622133170 @default.
- W3204275552 cites W2754429341 @default.
- W3204275552 cites W2766160953 @default.
- W3204275552 cites W2774465974 @default.
- W3204275552 cites W2883201703 @default.
- W3204275552 cites W2886864340 @default.
- W3204275552 cites W2903890472 @default.
- W3204275552 cites W2915153138 @default.
- W3204275552 cites W2924096405 @default.
- W3204275552 cites W2946789497 @default.
- W3204275552 cites W2953640184 @default.
- W3204275552 cites W2962862931 @default.
- W3204275552 cites W2977678031 @default.
- W3204275552 cites W2979785481 @default.
- W3204275552 cites W2994659735 @default.
- W3204275552 cites W2995179471 @default.
- W3204275552 cites W3006107677 @default.
- W3204275552 cites W3008392016 @default.
- W3204275552 cites W3011417748 @default.
- W3204275552 cites W3045004532 @default.
- W3204275552 cites W3085982689 @default.
- W3204275552 cites W3091457288 @default.
- W3204275552 cites W3128179149 @default.
- W3204275552 cites W3201276453 @default.
- W3204275552 hasPublicationYear "2020" @default.
- W3204275552 type Work @default.
- W3204275552 sameAs 3204275552 @default.
- W3204275552 citedByCount "0" @default.
- W3204275552 countsByYear W32042755522021 @default.
- W3204275552 crossrefType "posted-content" @default.
- W3204275552 hasAuthorship W3204275552A5048496396 @default.
- W3204275552 hasAuthorship W3204275552A5062795612 @default.
- W3204275552 hasConcept C120330832 @default.
- W3204275552 hasConcept C127413603 @default.
- W3204275552 hasConcept C134306372 @default.
- W3204275552 hasConcept C147176958 @default.
- W3204275552 hasConcept C162324750 @default.
- W3204275552 hasConcept C175444787 @default.
- W3204275552 hasConcept C182365436 @default.
- W3204275552 hasConcept C22212356 @default.
- W3204275552 hasConcept C2779214396 @default.
- W3204275552 hasConcept C33923547 @default.
- W3204275552 hasConcept C41008148 @default.
- W3204275552 hasConcept C4792198 @default.
- W3204275552 hasConceptScore W3204275552C120330832 @default.
- W3204275552 hasConceptScore W3204275552C127413603 @default.
- W3204275552 hasConceptScore W3204275552C134306372 @default.
- W3204275552 hasConceptScore W3204275552C147176958 @default.
- W3204275552 hasConceptScore W3204275552C162324750 @default.
- W3204275552 hasConceptScore W3204275552C175444787 @default.
- W3204275552 hasConceptScore W3204275552C182365436 @default.
- W3204275552 hasConceptScore W3204275552C22212356 @default.
- W3204275552 hasConceptScore W3204275552C2779214396 @default.
- W3204275552 hasConceptScore W3204275552C33923547 @default.
- W3204275552 hasConceptScore W3204275552C41008148 @default.
- W3204275552 hasConceptScore W3204275552C4792198 @default.
- W3204275552 hasOpenAccess W3204275552 @default.
- W3204275552 hasRelatedWork W2123368064 @default.
- W3204275552 hasRelatedWork W218400105 @default.
- W3204275552 hasRelatedWork W2535853284 @default.
- W3204275552 hasRelatedWork W2548752288 @default.
- W3204275552 hasRelatedWork W2606789281 @default.
- W3204275552 hasRelatedWork W2744896399 @default.
- W3204275552 hasRelatedWork W2760391618 @default.
- W3204275552 hasRelatedWork W3008392016 @default.
- W3204275552 hasRelatedWork W3084119802 @default.
- W3204275552 hasRelatedWork W3094687104 @default.
- W3204275552 hasRelatedWork W3138775068 @default.
- W3204275552 hasRelatedWork W3153171463 @default.
- W3204275552 hasRelatedWork W3185299606 @default.
- W3204275552 hasRelatedWork W3207549528 @default.
- W3204275552 hasRelatedWork W570892390 @default.
- W3204275552 hasRelatedWork W592128858 @default.
- W3204275552 hasRelatedWork W632141942 @default.