Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204286818> ?p ?o ?g. }
- W3204286818 endingPage "3678" @default.
- W3204286818 startingPage "3667" @default.
- W3204286818 abstract "ConspectusAerosols are ubiquitous in the atmosphere and profoundly affect climate systems and human health. To gain more insights on their broad impacts, we need to comprehensively understand the fundamental properties of atmospheric aerosols. Since aerosols are multiphase, a dispersion of condensed matter (solid particles or liquid droplets, hereafter particles) in gas, partitioning of volatile matter between the condensed and the gas phases is one defining characteristic of aerosols. For example, water content partitioning under different relative humidity conditions, known as aerosol hygroscopicity, has been extensively investigated in the past decades. Meanwhile, partitioning of volatile organic or inorganic components, which is referred to as aerosol volatility, remains understudied. Commonly, a bulk solution system is treated as a single phase, with volatility mainly determined by the nature of its components, and the composition partitioning between solution and gas phase is limited. Aerosols, however, comprise an extensive gas phase, and their volatility can also be induced by component reactions. These reactions occurring within aerosols are driven by the formation of volatile products and their continuous partitioning into the gas phase. As a consequence, the overall aerosol systems exhibit prominent volatility. Noteworthily, such volatility induced by reactions is a phenomenon exclusively observed in the multiphase aerosol systems, and it is trivial in bulk solutions due to the limited extent of liquid–gas partitioning. Take the chloride depletion in sea salt particles as an example. Recent findings have revealed that chloride depletion can be caused by reactions between NaCl and weak organic acids, which release HCl into the gas phase. Such a reaction can be described as a strong acid displaced by a weak acid, which is hardly observed in bulk phase. Generally, this unique partitioning behavior of aerosol systems and its potential to alter aerosol composition, size, reactivity, and other physicochemical properties merits more attention by atmospheric community.This Account focuses on the recent advancements in the research of component reactions that induce aerosol volatility. These reactions can be categorized into four types: chloride depletion, nitrate depletion, ammonium depletion, and salt hydrolysis. The depletion of chloride or nitrate can be regarded as a displacement reaction, in which a strong acid is displaced by a weak acid. Such a reaction releases highly volatile HCl or HNO3 into the gas phase and leads to a loss of chloride or nitrate within the particles. Likewise, ammonium depletion is a displacement reaction in which a strong base is displaced by a weak base, resulting in release of ammonia and substantial changes in aerosol hygroscopicity. In addition, aerosol volatility can also be induced by salt hydrolysis in a specific case, which is sustained by the coexistence of proton acceptor and hydroxide ion acceptor within particles. Furthermore, we quantitatively discuss these displacement reactions from both thermodynamic and kinetic perspectives, by using the extended aerosol inorganic model (E-AIM) and Maxwell steady-state diffusive mass transfer equation, respectively. Given the ubiquity of component partitioning in aerosol systems, our discussion may provide a new perspective on the underlying mechanisms of aerosol aging and relevant climate effects." @default.
- W3204286818 created "2021-10-11" @default.
- W3204286818 creator A5001389378 @default.
- W3204286818 creator A5033080900 @default.
- W3204286818 creator A5065933713 @default.
- W3204286818 creator A5087631945 @default.
- W3204286818 date "2021-09-27" @default.
- W3204286818 modified "2023-10-10" @default.
- W3204286818 title "Strong Acids or Bases Displaced by Weak Acids or Bases in Aerosols: Reactions Driven by the Continuous Partitioning of Volatile Products into the Gas Phase" @default.
- W3204286818 cites W1480137180 @default.
- W3204286818 cites W1551227777 @default.
- W3204286818 cites W1946817416 @default.
- W3204286818 cites W1964822767 @default.
- W3204286818 cites W1965830353 @default.
- W3204286818 cites W1973728267 @default.
- W3204286818 cites W1978015411 @default.
- W3204286818 cites W1984484393 @default.
- W3204286818 cites W1987933006 @default.
- W3204286818 cites W1988320097 @default.
- W3204286818 cites W1995584763 @default.
- W3204286818 cites W2003281234 @default.
- W3204286818 cites W2042087925 @default.
- W3204286818 cites W2050900007 @default.
- W3204286818 cites W2053287784 @default.
- W3204286818 cites W2058138582 @default.
- W3204286818 cites W2058191878 @default.
- W3204286818 cites W2065953131 @default.
- W3204286818 cites W2067420336 @default.
- W3204286818 cites W2070804679 @default.
- W3204286818 cites W2075926799 @default.
- W3204286818 cites W2076112917 @default.
- W3204286818 cites W2076121640 @default.
- W3204286818 cites W2094172643 @default.
- W3204286818 cites W2094440342 @default.
- W3204286818 cites W2095499638 @default.
- W3204286818 cites W2096462582 @default.
- W3204286818 cites W2096673955 @default.
- W3204286818 cites W2101392489 @default.
- W3204286818 cites W2108369371 @default.
- W3204286818 cites W2115438797 @default.
- W3204286818 cites W2121136157 @default.
- W3204286818 cites W2139470170 @default.
- W3204286818 cites W2145061114 @default.
- W3204286818 cites W2146891935 @default.
- W3204286818 cites W2159771554 @default.
- W3204286818 cites W2164091071 @default.
- W3204286818 cites W2184365968 @default.
- W3204286818 cites W2256728714 @default.
- W3204286818 cites W2278216748 @default.
- W3204286818 cites W2318150963 @default.
- W3204286818 cites W2331671671 @default.
- W3204286818 cites W2465534741 @default.
- W3204286818 cites W2486363760 @default.
- W3204286818 cites W2617272501 @default.
- W3204286818 cites W2702859621 @default.
- W3204286818 cites W2730241966 @default.
- W3204286818 cites W2736986172 @default.
- W3204286818 cites W2769382577 @default.
- W3204286818 cites W2770461250 @default.
- W3204286818 cites W2790349864 @default.
- W3204286818 cites W2802726702 @default.
- W3204286818 cites W2804499583 @default.
- W3204286818 cites W2892560419 @default.
- W3204286818 cites W2897021265 @default.
- W3204286818 cites W2899653950 @default.
- W3204286818 cites W2934962998 @default.
- W3204286818 cites W2942585918 @default.
- W3204286818 cites W3015700659 @default.
- W3204286818 cites W3022891657 @default.
- W3204286818 cites W3024809155 @default.
- W3204286818 cites W3086296031 @default.
- W3204286818 cites W3114684333 @default.
- W3204286818 cites W4236270162 @default.
- W3204286818 doi "https://doi.org/10.1021/acs.accounts.1c00318" @default.
- W3204286818 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34569236" @default.
- W3204286818 hasPublicationYear "2021" @default.
- W3204286818 type Work @default.
- W3204286818 sameAs 3204286818 @default.
- W3204286818 citedByCount "10" @default.
- W3204286818 countsByYear W32042868182022 @default.
- W3204286818 countsByYear W32042868182023 @default.
- W3204286818 crossrefType "journal-article" @default.
- W3204286818 hasAuthorship W3204286818A5001389378 @default.
- W3204286818 hasAuthorship W3204286818A5033080900 @default.
- W3204286818 hasAuthorship W3204286818A5065933713 @default.
- W3204286818 hasAuthorship W3204286818A5087631945 @default.
- W3204286818 hasConcept C106159729 @default.
- W3204286818 hasConcept C107872376 @default.
- W3204286818 hasConcept C127413603 @default.
- W3204286818 hasConcept C159467904 @default.
- W3204286818 hasConcept C162324750 @default.
- W3204286818 hasConcept C178790620 @default.
- W3204286818 hasConcept C185592680 @default.
- W3204286818 hasConcept C2779345167 @default.
- W3204286818 hasConcept C3020013744 @default.
- W3204286818 hasConcept C42360764 @default.
- W3204286818 hasConcept C91602232 @default.
- W3204286818 hasConceptScore W3204286818C106159729 @default.