Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204287795> ?p ?o ?g. }
- W3204287795 endingPage "e29544" @default.
- W3204287795 startingPage "e29544" @default.
- W3204287795 abstract "COVID-19 is a major public health concern. Given the extent of the pandemic, it is urgent to identify risk factors associated with disease severity. More accurate prediction of those at risk of developing severe infections is of high clinical importance.Based on the UK Biobank (UKBB), we aimed to build machine learning models to predict the risk of developing severe or fatal infections, and uncover major risk factors involved.We first restricted the analysis to infected individuals (n=7846), then performed analysis at a population level, considering those with no known infection as controls (ncontrols=465,728). Hospitalization was used as a proxy for severity. A total of 97 clinical variables (collected prior to the COVID-19 outbreak) covering demographic variables, comorbidities, blood measurements (eg, hematological/liver/renal function/metabolic parameters), anthropometric measures, and other risk factors (eg, smoking/drinking) were included as predictors. We also constructed a simplified (lite) prediction model using 27 covariates that can be more easily obtained (demographic and comorbidity data). XGboost (gradient-boosted trees) was used for prediction and predictive performance was assessed by cross-validation. Variable importance was quantified by Shapley values (ShapVal), permutation importance (PermImp), and accuracy gain. Shapley dependency and interaction plots were used to evaluate the pattern of relationships between risk factors and outcomes.A total of 2386 severe and 477 fatal cases were identified. For analyses within infected individuals (n=7846), our prediction model achieved area under the receiving-operating characteristic curve (AUC-ROC) of 0.723 (95% CI 0.711-0.736) and 0.814 (95% CI 0.791-0.838) for severe and fatal infections, respectively. The top 5 contributing factors (sorted by ShapVal) for severity were age, number of drugs taken (cnt_tx), cystatin C (reflecting renal function), waist-to-hip ratio (WHR), and Townsend deprivation index (TDI). For mortality, the top features were age, testosterone, cnt_tx, waist circumference (WC), and red cell distribution width. For analyses involving the whole UKBB population, AUCs for severity and fatality were 0.696 (95% CI 0.684-0.708) and 0.825 (95% CI 0.802-0.848), respectively. The same top 5 risk factors were identified for both outcomes, namely, age, cnt_tx, WC, WHR, and TDI. Apart from the above, age, cystatin C, TDI, and cnt_tx were among the top 10 across all 4 analyses. Other diseases top ranked by ShapVal or PermImp were type 2 diabetes mellitus (T2DM), coronary artery disease, atrial fibrillation, and dementia, among others. For the lite models, predictive performances were broadly similar, with estimated AUCs of 0.716, 0.818, 0.696, and 0.830, respectively. The top ranked variables were similar to above, including age, cnt_tx, WC, sex (male), and T2DM.We identified numerous baseline clinical risk factors for severe/fatal infection by XGboost. For example, age, central obesity, impaired renal function, multiple comorbidities, and cardiometabolic abnormalities may predispose to poorer outcomes. The prediction models may be useful at a population level to identify those susceptible to developing severe/fatal infections, facilitating targeted prevention strategies. A risk-prediction tool is also available online. Further replications in independent cohorts are required to verify our findings." @default.
- W3204287795 created "2021-10-11" @default.
- W3204287795 creator A5010652735 @default.
- W3204287795 creator A5035125012 @default.
- W3204287795 creator A5042516960 @default.
- W3204287795 creator A5052748184 @default.
- W3204287795 date "2021-09-30" @default.
- W3204287795 modified "2023-10-07" @default.
- W3204287795 title "Uncovering Clinical Risk Factors and Predicting Severe COVID-19 Cases Using UK Biobank Data: Machine Learning Approach" @default.
- W3204287795 cites W1489122873 @default.
- W3204287795 cites W1987424755 @default.
- W3204287795 cites W2035021983 @default.
- W3204287795 cites W2046393754 @default.
- W3204287795 cites W2048178552 @default.
- W3204287795 cites W2064186732 @default.
- W3204287795 cites W2071949631 @default.
- W3204287795 cites W2082704080 @default.
- W3204287795 cites W2096555119 @default.
- W3204287795 cites W2098824882 @default.
- W3204287795 cites W2102636708 @default.
- W3204287795 cites W2112316706 @default.
- W3204287795 cites W2129899223 @default.
- W3204287795 cites W2132432664 @default.
- W3204287795 cites W2141019052 @default.
- W3204287795 cites W2154286581 @default.
- W3204287795 cites W2157995113 @default.
- W3204287795 cites W2161009717 @default.
- W3204287795 cites W2507380695 @default.
- W3204287795 cites W2605975631 @default.
- W3204287795 cites W2723723801 @default.
- W3204287795 cites W2999615587 @default.
- W3204287795 cites W3002568562 @default.
- W3204287795 cites W3003668884 @default.
- W3204287795 cites W3008818676 @default.
- W3204287795 cites W3008827533 @default.
- W3204287795 cites W3014524604 @default.
- W3204287795 cites W3016126001 @default.
- W3204287795 cites W3020593475 @default.
- W3204287795 cites W3023316367 @default.
- W3204287795 cites W3024090047 @default.
- W3204287795 cites W3024263032 @default.
- W3204287795 cites W3025271482 @default.
- W3204287795 cites W3028423411 @default.
- W3204287795 cites W3030870282 @default.
- W3204287795 cites W3032845756 @default.
- W3204287795 cites W3033717594 @default.
- W3204287795 cites W3037173725 @default.
- W3204287795 cites W3037437442 @default.
- W3204287795 cites W3039624693 @default.
- W3204287795 cites W3042206791 @default.
- W3204287795 cites W3042557581 @default.
- W3204287795 cites W3046481704 @default.
- W3204287795 cites W3046629770 @default.
- W3204287795 cites W3047144258 @default.
- W3204287795 cites W3048479592 @default.
- W3204287795 cites W3048632747 @default.
- W3204287795 cites W3049373864 @default.
- W3204287795 cites W3080216282 @default.
- W3204287795 cites W3080296106 @default.
- W3204287795 cites W3080887274 @default.
- W3204287795 cites W3086570102 @default.
- W3204287795 cites W3086755607 @default.
- W3204287795 cites W3092436046 @default.
- W3204287795 cites W3094542430 @default.
- W3204287795 cites W3100291138 @default.
- W3204287795 cites W3106354301 @default.
- W3204287795 cites W3112087359 @default.
- W3204287795 cites W3112105690 @default.
- W3204287795 cites W3114025153 @default.
- W3204287795 cites W3131595818 @default.
- W3204287795 cites W3131688063 @default.
- W3204287795 cites W3135778423 @default.
- W3204287795 cites W3137135253 @default.
- W3204287795 cites W3144611861 @default.
- W3204287795 cites W3146455499 @default.
- W3204287795 cites W3158276912 @default.
- W3204287795 cites W3158669258 @default.
- W3204287795 cites W3159689317 @default.
- W3204287795 cites W3160138987 @default.
- W3204287795 cites W3162199380 @default.
- W3204287795 cites W3162503280 @default.
- W3204287795 cites W3162810948 @default.
- W3204287795 doi "https://doi.org/10.2196/29544" @default.
- W3204287795 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8485986" @default.
- W3204287795 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34591027" @default.
- W3204287795 hasPublicationYear "2021" @default.
- W3204287795 type Work @default.
- W3204287795 sameAs 3204287795 @default.
- W3204287795 citedByCount "18" @default.
- W3204287795 countsByYear W32042877952022 @default.
- W3204287795 countsByYear W32042877952023 @default.
- W3204287795 crossrefType "journal-article" @default.
- W3204287795 hasAuthorship W3204287795A5010652735 @default.
- W3204287795 hasAuthorship W3204287795A5035125012 @default.
- W3204287795 hasAuthorship W3204287795A5042516960 @default.
- W3204287795 hasAuthorship W3204287795A5052748184 @default.
- W3204287795 hasBestOaLocation W32042877951 @default.
- W3204287795 hasConcept C116567970 @default.