Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204305700> ?p ?o ?g. }
- W3204305700 abstract "The marine bacterium Vibrio fischeri efficiently colonizes its symbiotic squid host, Euprymna scolopes, by producing a transient biofilm dependent on the symbiosis polysaccharide (SYP). In vitro, however, wild-type strain ES114 fails to form SYP-dependent biofilms. Instead, genetically engineered strains, such as those lacking the negative regulator BinK, have been developed to study this phenomenon. Historically, V. fischeri has been grown using LBS, a complex medium containing tryptone and yeast extract; supplementation with calcium is required to induce biofilm formation by a binK mutant. Here, through our discovery that yeast extract inhibits biofilm formation, we uncover signals and underlying mechanisms that control V. fischeri biofilm formation. In contrast to its inability to form a biofilm on unsupplemented LBS, a binK mutant formed cohesive, SYP-dependent colony biofilms on tTBS, modified LBS that lacks yeast extract. Moreover, wild-type strain ES114 became proficient to form cohesive, SYP-dependent biofilms when grown in tTBS supplemented with both calcium and the vitamin para-aminobenzoic acid (pABA); neither molecule alone was sufficient, indicating that this phenotype relies on coordinating two cues. pABA/calcium supplementation also inhibited bacterial motility. Consistent with these phenotypes, cells grown in tTBS with pABA/calcium were enriched in transcripts for biofilm-related genes and predicted diguanylate cyclases, which produce the second messenger cyclic-di-GMP (c-di-GMP). They also exhibited elevated levels of c-di-GMP, which was required for the observed phenotypes, as phosphodiesterase overproduction abrogated biofilm formation and partially rescued motility. This work thus provides insight into conditions, signals, and processes that promote biofilm formation by V. fischeri. IMPORTANCE Bacteria integrate environmental signals to regulate gene expression and protein production to adapt to their surroundings. One such behavioral adaptation is the formation of a biofilm, which can promote adherence and colonization and provide protection against antimicrobials. Identifying signals that trigger biofilm formation and the underlying mechanism(s) of action remain important and challenging areas of investigation. Here, we determined that yeast extract, commonly used for growth of bacteria in laboratory culture, inhibits biofilm formation by Vibrio fischeri, a model bacterium used for investigating host-relevant biofilm formation. Omitting yeast extract from the growth medium led to the identification of an unusual signal, the vitamin para-aminobenzoic acid (pABA), that when added together with calcium could induce biofilm formation. pABA increased the concentrations of the second messenger, c-di-GMP, which was necessary but not sufficient to induce biofilm formation. This work thus advances our understanding of signals and signal integration controlling bacterial biofilm formation." @default.
- W3204305700 created "2021-10-11" @default.
- W3204305700 creator A5006801176 @default.
- W3204305700 creator A5022604052 @default.
- W3204305700 creator A5030854961 @default.
- W3204305700 creator A5040326598 @default.
- W3204305700 creator A5063748708 @default.
- W3204305700 creator A5090274766 @default.
- W3204305700 date "2021-10-26" @default.
- W3204305700 modified "2023-10-06" @default.
- W3204305700 title "Para-Aminobenzoic Acid, Calcium, and c-di-GMP Induce Formation of Cohesive, Syp-Polysaccharide-Dependent Biofilms in Vibrio fischeri" @default.
- W3204305700 cites W1165520136 @default.
- W3204305700 cites W1724882123 @default.
- W3204305700 cites W1825870630 @default.
- W3204305700 cites W1928841173 @default.
- W3204305700 cites W1964112944 @default.
- W3204305700 cites W1981697326 @default.
- W3204305700 cites W1986637662 @default.
- W3204305700 cites W1991774743 @default.
- W3204305700 cites W2015676902 @default.
- W3204305700 cites W2037365513 @default.
- W3204305700 cites W2044362958 @default.
- W3204305700 cites W2054611328 @default.
- W3204305700 cites W2054799851 @default.
- W3204305700 cites W2073496744 @default.
- W3204305700 cites W2101950067 @default.
- W3204305700 cites W2103503454 @default.
- W3204305700 cites W2105618126 @default.
- W3204305700 cites W2112846947 @default.
- W3204305700 cites W2114785758 @default.
- W3204305700 cites W2114972654 @default.
- W3204305700 cites W2123358379 @default.
- W3204305700 cites W2123465288 @default.
- W3204305700 cites W2124985265 @default.
- W3204305700 cites W2131271579 @default.
- W3204305700 cites W2132057657 @default.
- W3204305700 cites W2132665880 @default.
- W3204305700 cites W2134349239 @default.
- W3204305700 cites W2134526812 @default.
- W3204305700 cites W2139038519 @default.
- W3204305700 cites W2140440247 @default.
- W3204305700 cites W2143606104 @default.
- W3204305700 cites W2147121772 @default.
- W3204305700 cites W2147217723 @default.
- W3204305700 cites W2150623405 @default.
- W3204305700 cites W2151936805 @default.
- W3204305700 cites W2156319328 @default.
- W3204305700 cites W2161057282 @default.
- W3204305700 cites W2161313438 @default.
- W3204305700 cites W2179438025 @default.
- W3204305700 cites W2299850063 @default.
- W3204305700 cites W2580670017 @default.
- W3204305700 cites W2754851756 @default.
- W3204305700 cites W2778971247 @default.
- W3204305700 cites W2789703498 @default.
- W3204305700 cites W2808682648 @default.
- W3204305700 cites W2882974319 @default.
- W3204305700 cites W2889293022 @default.
- W3204305700 cites W2941051597 @default.
- W3204305700 cites W2955322935 @default.
- W3204305700 cites W3032896809 @default.
- W3204305700 cites W3041768928 @default.
- W3204305700 cites W3048457933 @default.
- W3204305700 cites W3088229940 @default.
- W3204305700 cites W3129903628 @default.
- W3204305700 cites W3135316689 @default.
- W3204305700 cites W3164834236 @default.
- W3204305700 cites W3165165483 @default.
- W3204305700 cites W3176467829 @default.
- W3204305700 doi "https://doi.org/10.1128/mbio.02034-21" @default.
- W3204305700 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8546588" @default.
- W3204305700 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34607467" @default.
- W3204305700 hasPublicationYear "2021" @default.
- W3204305700 type Work @default.
- W3204305700 sameAs 3204305700 @default.
- W3204305700 citedByCount "8" @default.
- W3204305700 countsByYear W32043057002022 @default.
- W3204305700 countsByYear W32043057002023 @default.
- W3204305700 crossrefType "journal-article" @default.
- W3204305700 hasAuthorship W3204305700A5006801176 @default.
- W3204305700 hasAuthorship W3204305700A5022604052 @default.
- W3204305700 hasAuthorship W3204305700A5030854961 @default.
- W3204305700 hasAuthorship W3204305700A5040326598 @default.
- W3204305700 hasAuthorship W3204305700A5063748708 @default.
- W3204305700 hasAuthorship W3204305700A5090274766 @default.
- W3204305700 hasBestOaLocation W32043057003 @default.
- W3204305700 hasConcept C104317684 @default.
- W3204305700 hasConcept C143065580 @default.
- W3204305700 hasConcept C178790620 @default.
- W3204305700 hasConcept C185592680 @default.
- W3204305700 hasConcept C207583985 @default.
- W3204305700 hasConcept C26628138 @default.
- W3204305700 hasConcept C2776154503 @default.
- W3204305700 hasConcept C2777576037 @default.
- W3204305700 hasConcept C2779222958 @default.
- W3204305700 hasConcept C519063684 @default.
- W3204305700 hasConcept C523546767 @default.
- W3204305700 hasConcept C54355233 @default.
- W3204305700 hasConcept C55493867 @default.
- W3204305700 hasConcept C58123911 @default.