Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204305882> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3204305882 endingPage "10321" @default.
- W3204305882 startingPage "10321" @default.
- W3204305882 abstract "Complete and high-resolution temperature observation data are important input parameters for agrometeorological disaster monitoring and ecosystem modelling. Due to the limitation of field meteorological observation conditions, observation data are commonly missing, and an appropriate data imputation method is necessary in meteorological data applications. In this paper, we focus on filling long gaps in meteorological observation data at field sites. A deep learning-based model, BiLSTM-I, is proposed to impute missing half-hourly temperature observations with high accuracy by considering temperature observations obtained manually at a low frequency. An encoder-decoder structure is adopted by BiLSTM-I, which is conducive to fully learning the potential distribution pattern of data. In addition, the BiLSTM-I model error function incorporates the difference between the final estimates and true observations. Therefore, the error function evaluates the imputation results more directly, and the model convergence error and the imputation accuracy are directly related, thus ensuring that the imputation error can be minimized at the time the model converges. The experimental analysis results show that the BiLSTM-I model designed in this paper is superior to other methods. For a test set with a time interval gap of 30 days, or a time interval gap of 60 days, the root mean square errors (RMSEs) remain stable, indicating the model's excellent generalization ability for different missing value gaps. Although the model is only applied to temperature data imputation in this study, it also has the potential to be applied to other meteorological dataset-filling scenarios." @default.
- W3204305882 created "2021-10-11" @default.
- W3204305882 creator A5001573772 @default.
- W3204305882 creator A5002609160 @default.
- W3204305882 creator A5051870414 @default.
- W3204305882 creator A5082134918 @default.
- W3204305882 date "2021-09-30" @default.
- W3204305882 modified "2023-10-16" @default.
- W3204305882 title "BiLSTM-I: A Deep Learning-Based Long Interval Gap-Filling Method for Meteorological Observation Data" @default.
- W3204305882 cites W1980864570 @default.
- W3204305882 cites W1992866626 @default.
- W3204305882 cites W2030552628 @default.
- W3204305882 cites W2033353095 @default.
- W3204305882 cites W2040315807 @default.
- W3204305882 cites W2064675550 @default.
- W3204305882 cites W2091800485 @default.
- W3204305882 cites W2143329262 @default.
- W3204305882 cites W2588954203 @default.
- W3204305882 cites W2754385338 @default.
- W3204305882 cites W2761311579 @default.
- W3204305882 cites W2766098680 @default.
- W3204305882 cites W2790233751 @default.
- W3204305882 cites W2803663262 @default.
- W3204305882 cites W2883260474 @default.
- W3204305882 cites W2917403813 @default.
- W3204305882 cites W2921781939 @default.
- W3204305882 cites W2926585089 @default.
- W3204305882 cites W2952267276 @default.
- W3204305882 cites W2965653205 @default.
- W3204305882 cites W2971337024 @default.
- W3204305882 cites W2971724044 @default.
- W3204305882 cites W2988563456 @default.
- W3204305882 cites W2999144726 @default.
- W3204305882 cites W3013899861 @default.
- W3204305882 cites W3014937650 @default.
- W3204305882 cites W3083018283 @default.
- W3204305882 cites W3105296632 @default.
- W3204305882 cites W3109901740 @default.
- W3204305882 doi "https://doi.org/10.3390/ijerph181910321" @default.
- W3204305882 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8507855" @default.
- W3204305882 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34639622" @default.
- W3204305882 hasPublicationYear "2021" @default.
- W3204305882 type Work @default.
- W3204305882 sameAs 3204305882 @default.
- W3204305882 citedByCount "3" @default.
- W3204305882 countsByYear W32043058822022 @default.
- W3204305882 countsByYear W32043058822023 @default.
- W3204305882 crossrefType "journal-article" @default.
- W3204305882 hasAuthorship W3204305882A5001573772 @default.
- W3204305882 hasAuthorship W3204305882A5002609160 @default.
- W3204305882 hasAuthorship W3204305882A5051870414 @default.
- W3204305882 hasAuthorship W3204305882A5082134918 @default.
- W3204305882 hasBestOaLocation W32043058821 @default.
- W3204305882 hasConcept C105795698 @default.
- W3204305882 hasConcept C119857082 @default.
- W3204305882 hasConcept C124101348 @default.
- W3204305882 hasConcept C139945424 @default.
- W3204305882 hasConcept C33923547 @default.
- W3204305882 hasConcept C41008148 @default.
- W3204305882 hasConcept C58041806 @default.
- W3204305882 hasConcept C9357733 @default.
- W3204305882 hasConceptScore W3204305882C105795698 @default.
- W3204305882 hasConceptScore W3204305882C119857082 @default.
- W3204305882 hasConceptScore W3204305882C124101348 @default.
- W3204305882 hasConceptScore W3204305882C139945424 @default.
- W3204305882 hasConceptScore W3204305882C33923547 @default.
- W3204305882 hasConceptScore W3204305882C41008148 @default.
- W3204305882 hasConceptScore W3204305882C58041806 @default.
- W3204305882 hasConceptScore W3204305882C9357733 @default.
- W3204305882 hasIssue "19" @default.
- W3204305882 hasLocation W32043058821 @default.
- W3204305882 hasLocation W32043058822 @default.
- W3204305882 hasLocation W32043058823 @default.
- W3204305882 hasOpenAccess W3204305882 @default.
- W3204305882 hasPrimaryLocation W32043058821 @default.
- W3204305882 hasRelatedWork W2105559915 @default.
- W3204305882 hasRelatedWork W2541565311 @default.
- W3204305882 hasRelatedWork W2751555317 @default.
- W3204305882 hasRelatedWork W2784019465 @default.
- W3204305882 hasRelatedWork W2907746047 @default.
- W3204305882 hasRelatedWork W2911362133 @default.
- W3204305882 hasRelatedWork W2967771611 @default.
- W3204305882 hasRelatedWork W3021292873 @default.
- W3204305882 hasRelatedWork W3049453136 @default.
- W3204305882 hasRelatedWork W3173796935 @default.
- W3204305882 hasVolume "18" @default.
- W3204305882 isParatext "false" @default.
- W3204305882 isRetracted "false" @default.
- W3204305882 magId "3204305882" @default.
- W3204305882 workType "article" @default.