Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204315094> ?p ?o ?g. }
- W3204315094 abstract "The constant emergence of COVID-19 variants reduces the effectiveness of existing vaccines and test kits. Therefore, it is critical to identify conserved structures in SARS-CoV-2 genomes as potential targets for variant-proof diagnostics and therapeutics. However, the algorithms to predict these conserved structures, which simultaneously fold and align multiple RNA homologs, scale at best cubically with sequence length, and are thus infeasible for coronaviruses, which possess the longest genomes (∼30,000 nt ) among RNA viruses. As a result, existing efforts on modeling SARS-CoV-2 structures resort to single sequence folding as well as local folding methods with short window sizes, which inevitably neglect long-range interactions that are crucial in RNA functions. Here we present LinearTurboFold, an efficient algorithm for folding RNA homologs that scales linearly with sequence length, enabling unprecedented global structural analysis on SARS-CoV-2. Surprisingly, on a group of SARS-CoV-2 and SARS-related genomes, LinearTurbo-Fold's purely in silico prediction not only is close to experimentally-guided models for local structures, but also goes far beyond them by capturing the end-to-end pairs between 5' and 3' UTRs (∼29,800 nt apart) that match perfectly with a purely experimental work. Furthermore, LinearTurboFold identifies novel conserved structures and conserved accessible regions as potential targets for designing efficient and mutation-insensitive small-molecule drugs, antisense oligonucleotides, siRNAs, CRISPR-Cas13 guide RNAs and RT-PCR primers. LinearTurboFold is a general technique that can also be applied to other RNA viruses and full-length genome studies, and will be a useful tool in fighting the current and future pandemics.Conserved RNA structures are critical for designing diagnostic and therapeutic tools for many diseases including COVID-19. However, existing algorithms are much too slow to model the global structures of full-length RNA viral genomes. We present LinearTurboFold, a linear-time algorithm that is orders of magnitude faster, making it the first method to simultaneously fold and align whole genomes of SARS-CoV-2 variants, the longest known RNA virus (∼30 kilobases). Our work enables unprecedented global structural analysis and captures long-range interactions that are out of reach for existing algorithms but crucial for RNA functions. LinearTurboFold is a general technique for full-length genome studies and can help fight the current and future pandemics." @default.
- W3204315094 created "2021-10-11" @default.
- W3204315094 creator A5002272329 @default.
- W3204315094 creator A5006404928 @default.
- W3204315094 creator A5035697887 @default.
- W3204315094 creator A5039874019 @default.
- W3204315094 creator A5065711966 @default.
- W3204315094 creator A5068189329 @default.
- W3204315094 creator A5072093137 @default.
- W3204315094 date "2021-11-15" @default.
- W3204315094 modified "2023-10-16" @default.
- W3204315094 title "LinearTurboFold: Linear-Time Global Prediction of Conserved Structures for RNA Homologs with Applications to SARS-CoV-2." @default.
- W3204315094 cites W1542426682 @default.
- W3204315094 cites W1559908984 @default.
- W3204315094 cites W1585306636 @default.
- W3204315094 cites W166206240 @default.
- W3204315094 cites W1965077482 @default.
- W3204315094 cites W1966500795 @default.
- W3204315094 cites W1980410097 @default.
- W3204315094 cites W1984006325 @default.
- W3204315094 cites W1984675364 @default.
- W3204315094 cites W1988512789 @default.
- W3204315094 cites W2009215595 @default.
- W3204315094 cites W2009570821 @default.
- W3204315094 cites W2011368877 @default.
- W3204315094 cites W2013989449 @default.
- W3204315094 cites W2018216725 @default.
- W3204315094 cites W2019590688 @default.
- W3204315094 cites W2024412145 @default.
- W3204315094 cites W2051188149 @default.
- W3204315094 cites W2082847215 @default.
- W3204315094 cites W2086561953 @default.
- W3204315094 cites W2087021327 @default.
- W3204315094 cites W2095145214 @default.
- W3204315094 cites W2098271534 @default.
- W3204315094 cites W2098571862 @default.
- W3204315094 cites W2111272410 @default.
- W3204315094 cites W2114094654 @default.
- W3204315094 cites W2119340328 @default.
- W3204315094 cites W2119377644 @default.
- W3204315094 cites W2124861326 @default.
- W3204315094 cites W2132922290 @default.
- W3204315094 cites W2133279153 @default.
- W3204315094 cites W2134861301 @default.
- W3204315094 cites W2137076005 @default.
- W3204315094 cites W2140872496 @default.
- W3204315094 cites W2141152740 @default.
- W3204315094 cites W2141351700 @default.
- W3204315094 cites W2142056356 @default.
- W3204315094 cites W2153140501 @default.
- W3204315094 cites W2159548583 @default.
- W3204315094 cites W2160378127 @default.
- W3204315094 cites W2165824239 @default.
- W3204315094 cites W2166745309 @default.
- W3204315094 cites W2168420558 @default.
- W3204315094 cites W2169185001 @default.
- W3204315094 cites W2170157200 @default.
- W3204315094 cites W2170342148 @default.
- W3204315094 cites W2300188811 @default.
- W3204315094 cites W2408839459 @default.
- W3204315094 cites W2472632604 @default.
- W3204315094 cites W25043965 @default.
- W3204315094 cites W2587970647 @default.
- W3204315094 cites W2759571676 @default.
- W3204315094 cites W2763042654 @default.
- W3204315094 cites W2803927613 @default.
- W3204315094 cites W2897202882 @default.
- W3204315094 cites W2997483194 @default.
- W3204315094 cites W3003217347 @default.
- W3204315094 cites W3004499272 @default.
- W3204315094 cites W3005389897 @default.
- W3204315094 cites W3024057275 @default.
- W3204315094 cites W3034555852 @default.
- W3204315094 cites W3036482641 @default.
- W3204315094 cites W3038575783 @default.
- W3204315094 cites W3043664941 @default.
- W3204315094 cites W3047349135 @default.
- W3204315094 cites W3087412117 @default.
- W3204315094 cites W3091134219 @default.
- W3204315094 cites W3091406140 @default.
- W3204315094 cites W3095990266 @default.
- W3204315094 cites W3098049011 @default.
- W3204315094 cites W3116296722 @default.
- W3204315094 cites W3116376362 @default.
- W3204315094 cites W3127145950 @default.
- W3204315094 cites W3134749134 @default.
- W3204315094 cites W3160029090 @default.
- W3204315094 cites W894213101 @default.
- W3204315094 cites W2790566782 @default.
- W3204315094 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8609897" @default.
- W3204315094 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34816262" @default.
- W3204315094 hasPublicationYear "2021" @default.
- W3204315094 type Work @default.
- W3204315094 sameAs 3204315094 @default.
- W3204315094 citedByCount "1" @default.
- W3204315094 countsByYear W32043150942021 @default.
- W3204315094 crossrefType "posted-content" @default.
- W3204315094 hasAuthorship W3204315094A5002272329 @default.
- W3204315094 hasAuthorship W3204315094A5006404928 @default.
- W3204315094 hasAuthorship W3204315094A5035697887 @default.