Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204328887> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3204328887 endingPage "351" @default.
- W3204328887 startingPage "341" @default.
- W3204328887 abstract "Measuring lesion size is an important step to assess tumor growth and monitor disease progression and therapy response in oncology image analysis. Although it is tedious and highly time-consuming, radiologists have to work on this task by using RECIST criteria (Response Evaluation Criteria In Solid Tumors) routinely and manually. Even though lesion segmentation may be the more accurate and clinically more valuable means, physicians can not manually segment lesions as now since much more heavy laboring will be required. In this paper, we present a prior-guided dual-path network (PDNet) to segment common types of lesions throughout the whole body and predict their RECIST diameters accurately and automatically. Similar to [], a click guidance from radiologists is the only requirement. There are two key characteristics in PDNet: 1) Learning lesion-specific attention matrices in parallel from the click prior information by the proposed prior encoder, named click-driven attention; 2) Aggregating the extracted multi-scale features comprehensively by introducing top-down and bottom-up connections in the proposed decoder, named dual-path connection. Experiments show the superiority of our proposed PDNet in lesion segmentation and RECIST diameter prediction using the DeepLesion dataset and an external test set. PDNet learns comprehensive and representative deep image features for our tasks and produces more accurate results on both lesion segmentation and RECIST diameter prediction." @default.
- W3204328887 created "2021-10-11" @default.
- W3204328887 creator A5014519132 @default.
- W3204328887 creator A5015929533 @default.
- W3204328887 creator A5016038454 @default.
- W3204328887 creator A5022354027 @default.
- W3204328887 creator A5023775139 @default.
- W3204328887 creator A5045227579 @default.
- W3204328887 creator A5051331130 @default.
- W3204328887 creator A5081658414 @default.
- W3204328887 creator A5083081446 @default.
- W3204328887 date "2021-01-01" @default.
- W3204328887 modified "2023-10-05" @default.
- W3204328887 title "Lesion Segmentation and RECIST Diameter Prediction via Click-Driven Attention and Dual-Path Connection" @default.
- W3204328887 cites W1901129140 @default.
- W3204328887 cites W1986649315 @default.
- W3204328887 cites W2019607817 @default.
- W3204328887 cites W2082765213 @default.
- W3204328887 cites W2108598243 @default.
- W3204328887 cites W2194775991 @default.
- W3204328887 cites W2412782625 @default.
- W3204328887 cites W2560311620 @default.
- W3204328887 cites W2732063980 @default.
- W3204328887 cites W2809942416 @default.
- W3204328887 cites W2810849947 @default.
- W3204328887 cites W2883683269 @default.
- W3204328887 cites W2912989244 @default.
- W3204328887 cites W2921110842 @default.
- W3204328887 cites W2955058313 @default.
- W3204328887 cites W2963008565 @default.
- W3204328887 cites W2964227007 @default.
- W3204328887 cites W3094638381 @default.
- W3204328887 cites W3094672651 @default.
- W3204328887 cites W3096907567 @default.
- W3204328887 cites W317170363 @default.
- W3204328887 cites W3204000660 @default.
- W3204328887 cites W3011742499 @default.
- W3204328887 doi "https://doi.org/10.1007/978-3-030-87196-3_32" @default.
- W3204328887 hasPublicationYear "2021" @default.
- W3204328887 type Work @default.
- W3204328887 sameAs 3204328887 @default.
- W3204328887 citedByCount "4" @default.
- W3204328887 countsByYear W32043288872022 @default.
- W3204328887 countsByYear W32043288872023 @default.
- W3204328887 crossrefType "book-chapter" @default.
- W3204328887 hasAuthorship W3204328887A5014519132 @default.
- W3204328887 hasAuthorship W3204328887A5015929533 @default.
- W3204328887 hasAuthorship W3204328887A5016038454 @default.
- W3204328887 hasAuthorship W3204328887A5022354027 @default.
- W3204328887 hasAuthorship W3204328887A5023775139 @default.
- W3204328887 hasAuthorship W3204328887A5045227579 @default.
- W3204328887 hasAuthorship W3204328887A5051331130 @default.
- W3204328887 hasAuthorship W3204328887A5081658414 @default.
- W3204328887 hasAuthorship W3204328887A5083081446 @default.
- W3204328887 hasBestOaLocation W32043288872 @default.
- W3204328887 hasConcept C111919701 @default.
- W3204328887 hasConcept C118505674 @default.
- W3204328887 hasConcept C142724271 @default.
- W3204328887 hasConcept C153180895 @default.
- W3204328887 hasConcept C154945302 @default.
- W3204328887 hasConcept C199360897 @default.
- W3204328887 hasConcept C2777735758 @default.
- W3204328887 hasConcept C2781156865 @default.
- W3204328887 hasConcept C31972630 @default.
- W3204328887 hasConcept C41008148 @default.
- W3204328887 hasConcept C71924100 @default.
- W3204328887 hasConcept C89600930 @default.
- W3204328887 hasConceptScore W3204328887C111919701 @default.
- W3204328887 hasConceptScore W3204328887C118505674 @default.
- W3204328887 hasConceptScore W3204328887C142724271 @default.
- W3204328887 hasConceptScore W3204328887C153180895 @default.
- W3204328887 hasConceptScore W3204328887C154945302 @default.
- W3204328887 hasConceptScore W3204328887C199360897 @default.
- W3204328887 hasConceptScore W3204328887C2777735758 @default.
- W3204328887 hasConceptScore W3204328887C2781156865 @default.
- W3204328887 hasConceptScore W3204328887C31972630 @default.
- W3204328887 hasConceptScore W3204328887C41008148 @default.
- W3204328887 hasConceptScore W3204328887C71924100 @default.
- W3204328887 hasConceptScore W3204328887C89600930 @default.
- W3204328887 hasLocation W32043288871 @default.
- W3204328887 hasLocation W32043288872 @default.
- W3204328887 hasOpenAccess W3204328887 @default.
- W3204328887 hasPrimaryLocation W32043288871 @default.
- W3204328887 hasRelatedWork W1669643531 @default.
- W3204328887 hasRelatedWork W1982826852 @default.
- W3204328887 hasRelatedWork W2005437358 @default.
- W3204328887 hasRelatedWork W2008656436 @default.
- W3204328887 hasRelatedWork W2023558673 @default.
- W3204328887 hasRelatedWork W2110230079 @default.
- W3204328887 hasRelatedWork W2134924024 @default.
- W3204328887 hasRelatedWork W2517104666 @default.
- W3204328887 hasRelatedWork W2613186388 @default.
- W3204328887 hasRelatedWork W1967061043 @default.
- W3204328887 isParatext "false" @default.
- W3204328887 isRetracted "false" @default.
- W3204328887 magId "3204328887" @default.
- W3204328887 workType "book-chapter" @default.