Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204330033> ?p ?o ?g. }
- W3204330033 abstract "Objectives: To establish and validate a nomogram integrating radiomics signatures from ultrasound and clinical factors to discriminate between benign, borderline, and malignant serous ovarian tumors. Materials and methods: In this study, a total of 279 pathology-confirmed serous ovarian tumors collected from 265 patients between March 2013 and December 2016 were used. The training cohort was generated by randomly selecting 70% of each of the three types (benign, borderline, and malignant) of tumors, while the remaining 30% was included in the validation cohort. From the transabdominal ultrasound scanning of ovarian tumors, the radiomics features were extracted, and a score was calculated. The ability of radiomics to differentiate between the grades of ovarian tumors was tested by comparing benign vs borderline and malignant (task 1) and borderline vs malignant (task 2). These results were compared with the diagnostic performance and subjective assessment by junior and senior sonographers. Finally, a clinical-feature alone model and a combined clinical-radiomics (CCR) model were built using predictive nomograms for the two tasks. Receiver operating characteristic (ROC) analysis, calibration curve, and decision curve analysis (DCA) were performed to evaluate the model performance. Results: The US-based radiomics models performed satisfactorily in both the tasks, showing especially higher accuracy in the second task by successfully discriminating borderline and malignant ovarian serous tumors compared to the evaluations by senior sonographers (AUC = 0.789 for seniors and 0.877 for radiomics models in task one; AUC = 0.612 for senior and 0.839 for radiomics model in task 2). We showed that the CCR model, comprising CA125 level, lesion location, ascites, and radiomics signatures, performed the best (AUC = 0.937, 95%CI 0.905-0.969 in task 1, AUC = 0.924, 95%CI 0.876-0.971 in task 2) in the training as well as in the validation cohorts (AUC = 0.914, 95%CI 0.851-0.976 in task 1, AUC = 0.890, 95%CI 0.794-0.987 in task 2). The calibration curve and DCA analysis of the CCR model more accurately predicted the classification of the tumors than the clinical features alone. Conclusion: This study integrates novel radiomics signatures from ultrasound and clinical factors to create a nomogram to provide preoperative diagnostic information for differentiating between benign, borderline, and malignant ovarian serous tumors, thereby reducing unnecessary and risky biopsies and surgeries." @default.
- W3204330033 created "2021-10-11" @default.
- W3204330033 creator A5001395097 @default.
- W3204330033 creator A5005368388 @default.
- W3204330033 creator A5007733167 @default.
- W3204330033 creator A5019018136 @default.
- W3204330033 creator A5026964697 @default.
- W3204330033 creator A5046884970 @default.
- W3204330033 creator A5066197284 @default.
- W3204330033 creator A5066541219 @default.
- W3204330033 creator A5081613731 @default.
- W3204330033 creator A5088657878 @default.
- W3204330033 creator A5089773076 @default.
- W3204330033 date "2021-09-28" @default.
- W3204330033 modified "2023-10-12" @default.
- W3204330033 title "Diagnosis of Ovarian Neoplasms Using Nomogram in Combination With Ultrasound Image-Based Radiomics Signature and Clinical Factors" @default.
- W3204330033 cites W2012338905 @default.
- W3204330033 cites W2102004732 @default.
- W3204330033 cites W2341495530 @default.
- W3204330033 cites W2343517882 @default.
- W3204330033 cites W2529101556 @default.
- W3204330033 cites W2566925943 @default.
- W3204330033 cites W2576840279 @default.
- W3204330033 cites W2594404528 @default.
- W3204330033 cites W2802934060 @default.
- W3204330033 cites W2890238129 @default.
- W3204330033 cites W2913823430 @default.
- W3204330033 cites W2917476978 @default.
- W3204330033 cites W2925583537 @default.
- W3204330033 cites W2928538608 @default.
- W3204330033 cites W2936844981 @default.
- W3204330033 cites W2945357020 @default.
- W3204330033 cites W2956237390 @default.
- W3204330033 cites W2963452953 @default.
- W3204330033 cites W2972908264 @default.
- W3204330033 cites W3006104185 @default.
- W3204330033 cites W3022087601 @default.
- W3204330033 cites W3029193216 @default.
- W3204330033 cites W3035201165 @default.
- W3204330033 cites W3044985529 @default.
- W3204330033 cites W3046810415 @default.
- W3204330033 cites W3047392322 @default.
- W3204330033 cites W3096898300 @default.
- W3204330033 cites W3099043519 @default.
- W3204330033 cites W3099203862 @default.
- W3204330033 cites W3169972108 @default.
- W3204330033 cites W4210987384 @default.
- W3204330033 cites W4211203170 @default.
- W3204330033 doi "https://doi.org/10.3389/fgene.2021.753948" @default.
- W3204330033 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8505695" @default.
- W3204330033 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34650603" @default.
- W3204330033 hasPublicationYear "2021" @default.
- W3204330033 type Work @default.
- W3204330033 sameAs 3204330033 @default.
- W3204330033 citedByCount "13" @default.
- W3204330033 countsByYear W32043300332022 @default.
- W3204330033 countsByYear W32043300332023 @default.
- W3204330033 crossrefType "journal-article" @default.
- W3204330033 hasAuthorship W3204330033A5001395097 @default.
- W3204330033 hasAuthorship W3204330033A5005368388 @default.
- W3204330033 hasAuthorship W3204330033A5007733167 @default.
- W3204330033 hasAuthorship W3204330033A5019018136 @default.
- W3204330033 hasAuthorship W3204330033A5026964697 @default.
- W3204330033 hasAuthorship W3204330033A5046884970 @default.
- W3204330033 hasAuthorship W3204330033A5066197284 @default.
- W3204330033 hasAuthorship W3204330033A5066541219 @default.
- W3204330033 hasAuthorship W3204330033A5081613731 @default.
- W3204330033 hasAuthorship W3204330033A5088657878 @default.
- W3204330033 hasAuthorship W3204330033A5089773076 @default.
- W3204330033 hasBestOaLocation W32043300331 @default.
- W3204330033 hasConcept C121608353 @default.
- W3204330033 hasConcept C126322002 @default.
- W3204330033 hasConcept C126838900 @default.
- W3204330033 hasConcept C143753070 @default.
- W3204330033 hasConcept C143998085 @default.
- W3204330033 hasConcept C150173356 @default.
- W3204330033 hasConcept C2778559731 @default.
- W3204330033 hasConcept C2780427987 @default.
- W3204330033 hasConcept C34626388 @default.
- W3204330033 hasConcept C58471807 @default.
- W3204330033 hasConcept C71924100 @default.
- W3204330033 hasConcept C72563966 @default.
- W3204330033 hasConceptScore W3204330033C121608353 @default.
- W3204330033 hasConceptScore W3204330033C126322002 @default.
- W3204330033 hasConceptScore W3204330033C126838900 @default.
- W3204330033 hasConceptScore W3204330033C143753070 @default.
- W3204330033 hasConceptScore W3204330033C143998085 @default.
- W3204330033 hasConceptScore W3204330033C150173356 @default.
- W3204330033 hasConceptScore W3204330033C2778559731 @default.
- W3204330033 hasConceptScore W3204330033C2780427987 @default.
- W3204330033 hasConceptScore W3204330033C34626388 @default.
- W3204330033 hasConceptScore W3204330033C58471807 @default.
- W3204330033 hasConceptScore W3204330033C71924100 @default.
- W3204330033 hasConceptScore W3204330033C72563966 @default.
- W3204330033 hasFunder F4320321001 @default.
- W3204330033 hasLocation W32043300331 @default.
- W3204330033 hasLocation W32043300332 @default.
- W3204330033 hasLocation W32043300333 @default.
- W3204330033 hasOpenAccess W3204330033 @default.
- W3204330033 hasPrimaryLocation W32043300331 @default.