Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204332256> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3204332256 endingPage "170" @default.
- W3204332256 startingPage "162" @default.
- W3204332256 abstract "No AccessEngineering NotesDelta-V Earth-Gravity-Assist Trajectories with Hybrid Solar Electric–Photonic PropulsionYuki Takao and Toshihiro ChujoYuki Takao https://orcid.org/0000-0003-1857-6449Japan Aerospace Exploration Agency, Kanagawa 252-5210, Japan*Postdoctoral Researcher, Institute of Space and Astronautical Science, 3-1-1 Yoshinodai, Chuo, Sagamihara. Member AIAA.Search for more papers by this author and Toshihiro ChujoTokyo Institute of Technology, Tokyo 152-8550, Japan†Assistant Professor, Department of Mechanical Engineering, 2-12-1 Ookayama, Meguro. Member AIAA.Search for more papers by this authorPublished Online:7 Oct 2021https://doi.org/10.2514/1.G006136SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Battin R. H., “The Determination of Round-Trip Planetary Reconnaissance Trajectories,” Journal of the Aero/Space Sciences, Vol. 26, No. 9, 1959, pp. 545–567. https://doi.org/10.2514/8.8204 LinkGoogle Scholar[2] Casalino L., Colasurdo G. and Pastrone D., “Optimal Low-Thrust Escape Trajectories Using Gravity Assist,” Journal of Guidance, Control, and Dynamics, Vol. 22, No. 5, 1999, pp. 637–642. https://doi.org/10.2514/2.4451 LinkGoogle Scholar[3] Petropoulos A. E., Longuski J. M. and Bonfiglio E. P., “Trajectories to Jupiter via Gravity Assists from Venus, Earth, and Mars,” Journal of Spacecraft and Rockets, Vol. 37, No. 6, 2000, pp. 776–783. https://doi.org/10.2514/2.3650 LinkGoogle Scholar[4] Wagner S. and Wie B., “Hybrid Algorithm for Multiple Gravity-Assist and Impulsive Delta-V Maneuvers,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 11, 2015, pp. 2096–2107. https://doi.org/10.2514/1.G000874 LinkGoogle Scholar[5] Hollenbeck G. R., “New Flight Techniques for Outer Planet Missions,” AIAA Conference on the Exploration of the Outer Planets, American Astronautical Society, AAS Paper 75-087, 1975. Google Scholar[6] Sweetser T. H., “Jacobi’s Integral and ΔV-Earth-Gravity-Assist (ΔV-EGA) Trajectories,” Advances in the Astronautical Sciences, Vol. 85, Aug. 1993, pp. 417–430. Google Scholar[7] Sims J. A., Longuski J. M. and Staugler A. J., “Leveraging for Interplanetary Missions: Multiple-Revolution Orbit Techniques,” Journal of Guidance, Control, and Dynamics, Vol. 20, No. 3, 1997, pp. 409–415. https://doi.org/10.2514/2.4064 LinkGoogle Scholar[8] Casalino L., Colasurdo G. and Pastrone D., “Optimization of ΔV Earth-Gravity-Assist Trajectories,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 6, 1998, pp. 991–995. https://doi.org/10.2514/2.4336 LinkGoogle Scholar[9] Meissinger H., “Earth Swingby–A Novel Approach to Interplanetary Missions Using Electric Propulsion,” AIAA 8th Electric Propulsion Conference, AIAA Paper 1970-1117, 1970. https://doi.org/10.2514/6.1970-1117 Google Scholar[10] Atkins K., Sauer C. and Flandro G., “Solar Electric Propulsion Combined with Earth Gravity Assist: A New Potential for Planetary Exploration,” AIAA/AAS Astrodynamics Conference, AIAA Paper 1976-807, 1976. https://doi.org/10.2514/6.1976-807 Google Scholar[11] Kawaguchi J., “Solar Electric Propulsion Leverage: Electric Delta-VEGA (EDVEGA) Scheme and Its Application,” 11th AAS/AIAA Space Flight Mechanics Meeting, American Astronautical Society, AAS Paper 01-213, 2001. Google Scholar[12] Kawaguchi J., “Performance Evaluation for the Electric Delta-V Earth Gravity Assist (EDVEGA) Scheme,” AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA Paper 2002-4899, 2002. https://doi.org/10.2514/6.2002-4899 Google Scholar[13] Gong S. and Macdonald M., “Review on Solar Sail Technology,” Astrodynamics, Vol. 3, No. 2, 2019, pp. 93–125. https://doi.org/10.1007/s42064-019-0038-x CrossrefGoogle Scholar[14] Heiligers J., Fernandez J. M., Stohlman O. R. and Wilkie W. K., “Trajectory Design for a Solar-Sail Mission to Asteroid 2016 HO 3,” Astrodynamics, Vol. 3, No. 3, 2019, pp. 231–246. https://doi.org/10.1007/s42064-019-0061-1 CrossrefGoogle Scholar[15] Quarta A. A., Mengali G. and Bassetto M., “Optimal Solar Sail Transfers to Circular Earth-Synchronous Displaced Orbits,” Astrodynamics, Vol. 4, No. 3, 2020, pp. 193–204. https://doi.org/10.1007/s42064-019-0057-x CrossrefGoogle Scholar[16] Kawaguchi J., Fujiwara A. and Uesugi T. K., “The Ion Engines Cruise Operation and the Earth Swingby of ‘Hayabusa’ (MUSES-C),” 55th International Astronautical Congress, International Astronautical Federation, Paper IAC 04-Q.5.02, 2004. https://doi.org/10.2514/6.IAC-04-Q.5.02 Google Scholar[17] Tsuda Y., Nakazawa S., Kushiki K., Yoshikawa M., Kuninaka H. and Watanabe S., “Flight Status of Robotic Asteroid Sample Return Mission Hayabusa2,” Acta Astronautica, Vol. 127, Oct.–Nov. 2016, pp. 702–709. https://doi.org/10.1016/j.actaastro.2016.01.027 CrossrefGoogle Scholar[18] Tsuda Y., Mori O., Funase R., Sawada H., Yamamoto T., Saiki T., Endo T., Yonekura K., Hoshino H. and Kawaguchi J., “Achievement of IKAROS–Japanese Deep Space Solar Sail Demonstration Mission,” Acta Astronautica, Vol. 82, No. 2, 2013, pp. 183–188. https://doi.org/10.1016/j.actaastro.2012.03.032 CrossrefGoogle Scholar[19] Vulpetti G., Johnson L. and Matloff G. L., “The NanoSAIL-D2 NASA Mission,” Solar Sails, Springer, New York, 2015, pp. 173–178. Google Scholar[20] Mansell J., Spencer D. A., Plante B., Diaz A., Fernandez M., Bellardo J., Betts B. and Nye B., “Orbit and Attitude Performance of the LightSail 2 Solar Sail Spacecraft,” AIAA Scitech 2020 Forum, AIAA Paper 2020-2177, 2020. https://doi.org/10.2514/6.2020-2177 Google Scholar[21] Baig S. and McInnes C. R., “Artificial Three-Body Equilibria for Hybrid Low-Thrust Propulsion,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 6, 2008, pp. 1644–1655. https://doi.org/10.2514/1.36125 LinkGoogle Scholar[22] Heiligers J., Ceriotti M., McInnes C. R. and Biggs J. D., “Displaced Geostationary Orbit Design Using Hybrid Sail Propulsion,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 6, 2011, pp. 1852–1866. https://doi.org/10.2514/1.53807 LinkGoogle Scholar[23] Wilcox B. H., “Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration,” 2012 IEEE Aerospace Conference, Institute of Electrical and Electronics Engineers, New York, 2012, pp. 1–8. https://doi.org/10.1109/AERO.2012.6187292 Google Scholar[24] Kawaguchi J., “A Solar Power Sail Mission for a Jovian Orbiter and Trojan Asteroid Flybys,” 55th International Astronautical Congress, International Astronautical Federation, Paper IAC 04-Q.2.A.03, 2004. https://doi.org/10.2514/6.IAC-04-Q.2.A.03 Google Scholar[25] Ono G., Mimasu Y. and Kawaguchi J., “Delta-VEGA with a Spinning Solar Sail via Attitude and Spin Rate Control,” 22nd Workshop on JAXA Astrodynamics and Flight Mechanics, Inst. of Space and Astronautical Science, Japan Aerospace Exploration Agency, Paper B-11, 2012. Google Scholar[26] McInnes C. R., Solar Sailing: Technology, Dynamics and Mission Applications, Springer Science & Business Media, New York, 2004, Chap. 2. Google Scholar[27] Takao Y., Mori O., Matsushita M. and Sugihara A. K., “Solar Electric Propulsion by a Solar Power Sail for Small Spacecraft Missions to the Outer Solar System,” Acta Astronautica, Vol. 181, April 2021, pp. 362–376. https://doi.org/10.1016/j.actaastro.2021.01.020 CrossrefGoogle Scholar[28] Meng Y., Zhang H. and Gao Y., “Low-Thrust Minimum-Fuel Trajectory Optimization Using Multiple Shooting Augmented by Analytical Derivatives,” Journal of Guidance, Control, and Dynamics, Vol. 42, No. 3, 2019, pp. 662–677. https://doi.org/10.2514/1.G003473 LinkGoogle Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Volume 45, Number 1January 2022 CrossmarkInformationCopyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAsteroidsAstronomyCelestial Coordinate SystemCelestial MechanicsPlanetary Science and ExplorationPlanetsSolar PhysicsSpace AgenciesSpace MissionsSpace Science and Technology KeywordsEarthSolar Electric PropulsionGravity Assist TrajectoriesHybrid PropulsionPontryagin's Maximum PrincipleFuel ConsumptionDeep Space ManeuverSynchronous OrbitSpacecraft DesignOrbital PeriodAcknowledgmentThis work was supported by Grants-in-Aid for Scientific Research (20 J01938) from the Japan Society for the Promotion of Science.PDF Received19 April 2021Accepted28 August 2021Published online7 October 2021" @default.
- W3204332256 created "2021-10-11" @default.
- W3204332256 creator A5058318836 @default.
- W3204332256 creator A5067564652 @default.
- W3204332256 date "2022-01-01" @default.
- W3204332256 modified "2023-10-01" @default.
- W3204332256 title "Delta-V Earth-Gravity-Assist Trajectories with Hybrid Solar Electric–Photonic Propulsion" @default.
- W3204332256 cites W1932641029 @default.
- W3204332256 cites W2003794421 @default.
- W3204332256 cites W2008622568 @default.
- W3204332256 cites W2039066122 @default.
- W3204332256 cites W2041576094 @default.
- W3204332256 cites W2056806161 @default.
- W3204332256 cites W2058478245 @default.
- W3204332256 cites W2092043187 @default.
- W3204332256 cites W2280932368 @default.
- W3204332256 cites W2906531917 @default.
- W3204332256 cites W2907736427 @default.
- W3204332256 cites W2932474873 @default.
- W3204332256 cites W2965191253 @default.
- W3204332256 cites W3126081881 @default.
- W3204332256 cites W592439347 @default.
- W3204332256 doi "https://doi.org/10.2514/1.g006136" @default.
- W3204332256 hasPublicationYear "2022" @default.
- W3204332256 type Work @default.
- W3204332256 sameAs 3204332256 @default.
- W3204332256 citedByCount "5" @default.
- W3204332256 countsByYear W32043322562022 @default.
- W3204332256 countsByYear W32043322562023 @default.
- W3204332256 crossrefType "journal-article" @default.
- W3204332256 hasAuthorship W3204332256A5058318836 @default.
- W3204332256 hasAuthorship W3204332256A5067564652 @default.
- W3204332256 hasConcept C1034443 @default.
- W3204332256 hasConcept C120665830 @default.
- W3204332256 hasConcept C121332964 @default.
- W3204332256 hasConcept C127413603 @default.
- W3204332256 hasConcept C1276947 @default.
- W3204332256 hasConcept C146978453 @default.
- W3204332256 hasConcept C148008966 @default.
- W3204332256 hasConcept C163368183 @default.
- W3204332256 hasConcept C20788544 @default.
- W3204332256 hasConcept C26148502 @default.
- W3204332256 hasConcept C5072461 @default.
- W3204332256 hasConcept C87355193 @default.
- W3204332256 hasConceptScore W3204332256C1034443 @default.
- W3204332256 hasConceptScore W3204332256C120665830 @default.
- W3204332256 hasConceptScore W3204332256C121332964 @default.
- W3204332256 hasConceptScore W3204332256C127413603 @default.
- W3204332256 hasConceptScore W3204332256C1276947 @default.
- W3204332256 hasConceptScore W3204332256C146978453 @default.
- W3204332256 hasConceptScore W3204332256C148008966 @default.
- W3204332256 hasConceptScore W3204332256C163368183 @default.
- W3204332256 hasConceptScore W3204332256C20788544 @default.
- W3204332256 hasConceptScore W3204332256C26148502 @default.
- W3204332256 hasConceptScore W3204332256C5072461 @default.
- W3204332256 hasConceptScore W3204332256C87355193 @default.
- W3204332256 hasFunder F4320334764 @default.
- W3204332256 hasIssue "1" @default.
- W3204332256 hasLocation W32043322561 @default.
- W3204332256 hasOpenAccess W3204332256 @default.
- W3204332256 hasPrimaryLocation W32043322561 @default.
- W3204332256 hasRelatedWork W1581128758 @default.
- W3204332256 hasRelatedWork W2019725932 @default.
- W3204332256 hasRelatedWork W2472120352 @default.
- W3204332256 hasRelatedWork W298018221 @default.
- W3204332256 hasRelatedWork W2998562287 @default.
- W3204332256 hasRelatedWork W4220898007 @default.
- W3204332256 hasRelatedWork W4283023714 @default.
- W3204332256 hasRelatedWork W4283276473 @default.
- W3204332256 hasRelatedWork W2159246896 @default.
- W3204332256 hasRelatedWork W2285282148 @default.
- W3204332256 hasVolume "45" @default.
- W3204332256 isParatext "false" @default.
- W3204332256 isRetracted "false" @default.
- W3204332256 magId "3204332256" @default.
- W3204332256 workType "article" @default.