Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204332624> ?p ?o ?g. }
- W3204332624 endingPage "6326" @default.
- W3204332624 startingPage "6308" @default.
- W3204332624 abstract "Water shortage in arid and semi-arid land is one of the most important challenges of decision-makers. The seawater greenhouse (SWG) is a useful solution for water supply in the agriculture sector. The optimal design of a SWG with lower consumption of energy and higher freshwater production is a real challenge for the decision-makers. This study used two ensemble models and multiple multi-layer perceptron (MLP) models based on non-climate data to predict freshwater production energy consumption in the SWG. The Copula Bayesian average model (CBMA) was used to develop the BMA model using different copula functions and distributions. In the first level, multiple MLP models using the dimension of SWG as inputs predicted freshwater and energy consumption in a SWG. In the next level, The CBMA and BMA were used to predict freshwater production and energy consumption. The uncertainty analysis of outputs, use of new models and non-climate data are the novelties of the current study. The results indicated that the CBMA decreased the mean absolute error (MAE) value of the BMA, MLP-SEOA, MLP-SCA, MLP-BA, MLP-PSO, and MLP models by 2.7%, 19%, 31%, 40%, 41%, and 42%, respectively for predicting freshwater production. The root mean square error (RMSE) of the CBMA was 40%, 49%, 56%, 57%, 62%, and 64% lower than those of the BMA, MLP-SEOA, MLP-SCA, MLP-BA, MLP-PSO, and MLP models, respectively for predicting energy consumption. The uncertainty analysis indicated that the CBMA and BMA provided the lowest uncertainty among other models. The current study results indicated that the use of ensemble models improved the accuracy of individual models for predicting energy consumption and freshwater production. The findings of the study indicated that the ensemble models using the dimension of SWGs as inputs successfully predicted energy consumption and freshwater production in a SWG." @default.
- W3204332624 created "2021-10-11" @default.
- W3204332624 creator A5008179908 @default.
- W3204332624 creator A5010789167 @default.
- W3204332624 creator A5018996307 @default.
- W3204332624 creator A5030272889 @default.
- W3204332624 creator A5053370863 @default.
- W3204332624 date "2021-11-01" @default.
- W3204332624 modified "2023-09-25" @default.
- W3204332624 title "Predicting freshwater production and energy consumption in a seawater greenhouse based on ensemble frameworks using optimized multi-layer perceptron" @default.
- W3204332624 cites W1989657880 @default.
- W3204332624 cites W1991612485 @default.
- W3204332624 cites W2038607625 @default.
- W3204332624 cites W2132908711 @default.
- W3204332624 cites W2146685064 @default.
- W3204332624 cites W2156031460 @default.
- W3204332624 cites W2158840489 @default.
- W3204332624 cites W2232317135 @default.
- W3204332624 cites W2583599952 @default.
- W3204332624 cites W2605210507 @default.
- W3204332624 cites W2620852106 @default.
- W3204332624 cites W2728997027 @default.
- W3204332624 cites W2809932617 @default.
- W3204332624 cites W2902421512 @default.
- W3204332624 cites W2903015779 @default.
- W3204332624 cites W2935908323 @default.
- W3204332624 cites W2954327213 @default.
- W3204332624 cites W3000414842 @default.
- W3204332624 cites W3004894624 @default.
- W3204332624 cites W3007782869 @default.
- W3204332624 cites W3013845303 @default.
- W3204332624 cites W3023207182 @default.
- W3204332624 cites W3029312492 @default.
- W3204332624 cites W3045615968 @default.
- W3204332624 cites W3046817929 @default.
- W3204332624 cites W3048965531 @default.
- W3204332624 cites W3061960139 @default.
- W3204332624 cites W3080631191 @default.
- W3204332624 cites W3080975371 @default.
- W3204332624 cites W3088474652 @default.
- W3204332624 cites W3088967933 @default.
- W3204332624 cites W3090390536 @default.
- W3204332624 cites W3091436908 @default.
- W3204332624 cites W3095239916 @default.
- W3204332624 cites W3100504477 @default.
- W3204332624 cites W3105346980 @default.
- W3204332624 cites W3114978292 @default.
- W3204332624 cites W3133173095 @default.
- W3204332624 cites W3188450664 @default.
- W3204332624 doi "https://doi.org/10.1016/j.egyr.2021.09.079" @default.
- W3204332624 hasPublicationYear "2021" @default.
- W3204332624 type Work @default.
- W3204332624 sameAs 3204332624 @default.
- W3204332624 citedByCount "19" @default.
- W3204332624 countsByYear W32043326242021 @default.
- W3204332624 countsByYear W32043326242022 @default.
- W3204332624 countsByYear W32043326242023 @default.
- W3204332624 crossrefType "journal-article" @default.
- W3204332624 hasAuthorship W3204332624A5008179908 @default.
- W3204332624 hasAuthorship W3204332624A5010789167 @default.
- W3204332624 hasAuthorship W3204332624A5018996307 @default.
- W3204332624 hasAuthorship W3204332624A5030272889 @default.
- W3204332624 hasAuthorship W3204332624A5053370863 @default.
- W3204332624 hasBestOaLocation W32043326241 @default.
- W3204332624 hasConcept C111368507 @default.
- W3204332624 hasConcept C127313418 @default.
- W3204332624 hasConcept C139719470 @default.
- W3204332624 hasConcept C144024400 @default.
- W3204332624 hasConcept C144027150 @default.
- W3204332624 hasConcept C154945302 @default.
- W3204332624 hasConcept C162324750 @default.
- W3204332624 hasConcept C171250308 @default.
- W3204332624 hasConcept C179717631 @default.
- W3204332624 hasConcept C18903297 @default.
- W3204332624 hasConcept C192562407 @default.
- W3204332624 hasConcept C197248824 @default.
- W3204332624 hasConcept C2778348673 @default.
- W3204332624 hasConcept C2779227376 @default.
- W3204332624 hasConcept C2780165032 @default.
- W3204332624 hasConcept C30772137 @default.
- W3204332624 hasConcept C32198211 @default.
- W3204332624 hasConcept C36289849 @default.
- W3204332624 hasConcept C39432304 @default.
- W3204332624 hasConcept C41008148 @default.
- W3204332624 hasConcept C50644808 @default.
- W3204332624 hasConcept C60908668 @default.
- W3204332624 hasConcept C86803240 @default.
- W3204332624 hasConceptScore W3204332624C111368507 @default.
- W3204332624 hasConceptScore W3204332624C127313418 @default.
- W3204332624 hasConceptScore W3204332624C139719470 @default.
- W3204332624 hasConceptScore W3204332624C144024400 @default.
- W3204332624 hasConceptScore W3204332624C144027150 @default.
- W3204332624 hasConceptScore W3204332624C154945302 @default.
- W3204332624 hasConceptScore W3204332624C162324750 @default.
- W3204332624 hasConceptScore W3204332624C171250308 @default.
- W3204332624 hasConceptScore W3204332624C179717631 @default.
- W3204332624 hasConceptScore W3204332624C18903297 @default.
- W3204332624 hasConceptScore W3204332624C192562407 @default.