Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204333372> ?p ?o ?g. }
- W3204333372 endingPage "90" @default.
- W3204333372 startingPage "75" @default.
- W3204333372 abstract "There is a growing recognition that imaging data contain hidden information, sometimes in plain sight. Accessing these data and linking them to clinically relevant information require advancements and fundamental shifts in how we analyze and interpret imaging studies. Artificial intelligence (AI) techniques can improve the process of collecting and cataloguing imaging data of bone tumors, integrating imaging results with other clinical information, recommending personalized treatments, and providing guidance on appropriate follow-up studies. Deep convolutional neural networks (deep-CNNs) are being developed for increasing image quality, detection of bone tumors, differentiation of benign and malignant lesions, and therapy planning. Two main bottlenecks for successful AI applications for bone tumor imaging to date are the need for large datasets and limited computational power, such as appropriate graphic processing units and memory capacity. Currently, deep-CNNs cannot guarantee correct diagnoses in novel circumstances that may not resemble previous training data. However, this problem will likely be solved in the near future by approaches such as cross-training CNNs, enabling AI to learn from sparse data, and sending CNN algorithms to multiple institutions for training purposes rather than collecting multi-institutional data for centralized training. The imaging community needs to join forces to fulfill this important requirement for the rapidly growing field of AI research." @default.
- W3204333372 created "2021-10-11" @default.
- W3204333372 creator A5024195324 @default.
- W3204333372 creator A5034343465 @default.
- W3204333372 creator A5086834693 @default.
- W3204333372 date "2022-01-01" @default.
- W3204333372 modified "2023-09-25" @default.
- W3204333372 title "Artificial intelligence for bone cancer imaging" @default.
- W3204333372 cites W1610777319 @default.
- W3204333372 cites W1976971669 @default.
- W3204333372 cites W1977946246 @default.
- W3204333372 cites W1997827764 @default.
- W3204333372 cites W2004134686 @default.
- W3204333372 cites W2014547837 @default.
- W3204333372 cites W2021409965 @default.
- W3204333372 cites W2022145491 @default.
- W3204333372 cites W2032220748 @default.
- W3204333372 cites W2034221188 @default.
- W3204333372 cites W2048514419 @default.
- W3204333372 cites W2056726720 @default.
- W3204333372 cites W2062567955 @default.
- W3204333372 cites W2063945200 @default.
- W3204333372 cites W2066362143 @default.
- W3204333372 cites W2096579040 @default.
- W3204333372 cites W2098152234 @default.
- W3204333372 cites W2101076925 @default.
- W3204333372 cites W2103212315 @default.
- W3204333372 cites W2103961143 @default.
- W3204333372 cites W2104095591 @default.
- W3204333372 cites W2112796928 @default.
- W3204333372 cites W2116360511 @default.
- W3204333372 cites W2121009299 @default.
- W3204333372 cites W2124260943 @default.
- W3204333372 cites W2137960802 @default.
- W3204333372 cites W2152526126 @default.
- W3204333372 cites W2155203841 @default.
- W3204333372 cites W2155263737 @default.
- W3204333372 cites W2165743137 @default.
- W3204333372 cites W2254289098 @default.
- W3204333372 cites W2258484932 @default.
- W3204333372 cites W2282156262 @default.
- W3204333372 cites W2292954491 @default.
- W3204333372 cites W2297599544 @default.
- W3204333372 cites W2313339984 @default.
- W3204333372 cites W2386192529 @default.
- W3204333372 cites W2395611524 @default.
- W3204333372 cites W2399140686 @default.
- W3204333372 cites W2488049693 @default.
- W3204333372 cites W2501158386 @default.
- W3204333372 cites W2517338052 @default.
- W3204333372 cites W2557738935 @default.
- W3204333372 cites W2591213449 @default.
- W3204333372 cites W2593603708 @default.
- W3204333372 cites W2604388535 @default.
- W3204333372 cites W2610796455 @default.
- W3204333372 cites W2617715906 @default.
- W3204333372 cites W2618530766 @default.
- W3204333372 cites W2739632768 @default.
- W3204333372 cites W2757509933 @default.
- W3204333372 cites W2766753387 @default.
- W3204333372 cites W2766766852 @default.
- W3204333372 cites W2782993895 @default.
- W3204333372 cites W2783895116 @default.
- W3204333372 cites W2788633781 @default.
- W3204333372 cites W2789588857 @default.
- W3204333372 cites W2795630411 @default.
- W3204333372 cites W2801160071 @default.
- W3204333372 cites W2801617208 @default.
- W3204333372 cites W2805641980 @default.
- W3204333372 cites W2805907705 @default.
- W3204333372 cites W2809226111 @default.
- W3204333372 cites W2886940786 @default.
- W3204333372 cites W2888529080 @default.
- W3204333372 cites W2892943043 @default.
- W3204333372 cites W2894577841 @default.
- W3204333372 cites W2897772195 @default.
- W3204333372 cites W2898094765 @default.
- W3204333372 cites W2898216258 @default.
- W3204333372 cites W2898765979 @default.
- W3204333372 cites W2901462650 @default.
- W3204333372 cites W2911471650 @default.
- W3204333372 cites W2921676720 @default.
- W3204333372 cites W2922203083 @default.
- W3204333372 cites W2935748854 @default.
- W3204333372 cites W2946642276 @default.
- W3204333372 cites W2947970155 @default.
- W3204333372 cites W2951116849 @default.
- W3204333372 cites W2954856834 @default.
- W3204333372 cites W2962914239 @default.
- W3204333372 cites W2963297012 @default.
- W3204333372 cites W2972922788 @default.
- W3204333372 cites W2973062544 @default.
- W3204333372 cites W2977816824 @default.
- W3204333372 cites W2981200183 @default.
- W3204333372 cites W2982704188 @default.
- W3204333372 cites W2995113209 @default.
- W3204333372 cites W2997151107 @default.
- W3204333372 cites W3004258103 @default.