Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204334872> ?p ?o ?g. }
- W3204334872 endingPage "3885" @default.
- W3204334872 startingPage "3885" @default.
- W3204334872 abstract "Land surface temperature (LST) is a crucial biophysical parameter related closely to the land–atmosphere interface. Satellite thermal infrared measurement provides an effective method to derive LST on regional and global scales, but it is very hard to acquire simultaneously high spatiotemporal resolution LST due to its limitation in the sensor design. Recently, many LST downscaling and spatiotemporal image fusion methods have been widely proposed to solve this problem. However, most methods ignored the spatial heterogeneity of LST distribution, and there are inconsistent image textures and LST values over heterogeneous regions. Thus, this study aims to propose one framework to derive high spatiotemporal resolution LSTs in heterogeneous areas by considering the optimal selection of LST predictors, the downscaling of MODIS LST, and the spatiotemporal fusion of Landsat 8 LST. A total of eight periods of MODIS and Landsat 8 data were used to predict the 100-m resolution LST at prediction time tp in Zhangye and Beijing of China. Further, the predicted LST at tp was quantitatively contrasted with the LSTs predicted by the regression-then-fusion strategy, STARFM-based fusion, and random forest-based regression, and was validated with the actual Landsat 8 LST product at tp. Results indicated that the proposed framework performed better in characterizing LST texture than the referenced three methods, and the root mean square error (RMSE) varied from 0.85 K to 2.29 K, and relative RMSE varied from 0.18 K to 0.69 K, where the correlation coefficients were all greater than 0.84. Furthermore, the distribution error analysis indicated the proposed new framework generated the most area proportion at 0~1 K in some heterogeneous regions, especially in artificial impermeable surfaces and bare lands. This means that this framework can provide a set of LST dataset with reasonable accuracy and a high spatiotemporal resolution over heterogeneous areas." @default.
- W3204334872 created "2021-10-11" @default.
- W3204334872 creator A5022234965 @default.
- W3204334872 creator A5026629570 @default.
- W3204334872 creator A5028821253 @default.
- W3204334872 creator A5037967253 @default.
- W3204334872 creator A5052370068 @default.
- W3204334872 creator A5067870373 @default.
- W3204334872 creator A5083560587 @default.
- W3204334872 date "2021-09-28" @default.
- W3204334872 modified "2023-10-18" @default.
- W3204334872 title "A Framework for Generating High Spatiotemporal Resolution Land Surface Temperature in Heterogeneous Areas" @default.
- W3204334872 cites W1840202565 @default.
- W3204334872 cites W1848721793 @default.
- W3204334872 cites W1969801270 @default.
- W3204334872 cites W1990330790 @default.
- W3204334872 cites W1996043099 @default.
- W3204334872 cites W1997058127 @default.
- W3204334872 cites W1998079645 @default.
- W3204334872 cites W1998349423 @default.
- W3204334872 cites W2011195592 @default.
- W3204334872 cites W2018112660 @default.
- W3204334872 cites W2023306858 @default.
- W3204334872 cites W2026337749 @default.
- W3204334872 cites W2027756597 @default.
- W3204334872 cites W2067542652 @default.
- W3204334872 cites W2088603520 @default.
- W3204334872 cites W2116327754 @default.
- W3204334872 cites W2119358039 @default.
- W3204334872 cites W2133665775 @default.
- W3204334872 cites W2153763028 @default.
- W3204334872 cites W2156049446 @default.
- W3204334872 cites W2164450828 @default.
- W3204334872 cites W2200350976 @default.
- W3204334872 cites W2230162384 @default.
- W3204334872 cites W2277069176 @default.
- W3204334872 cites W2289805253 @default.
- W3204334872 cites W2290137763 @default.
- W3204334872 cites W2301692565 @default.
- W3204334872 cites W2343523346 @default.
- W3204334872 cites W2500249665 @default.
- W3204334872 cites W2549340854 @default.
- W3204334872 cites W2607336919 @default.
- W3204334872 cites W2741291720 @default.
- W3204334872 cites W2792837797 @default.
- W3204334872 cites W2794423204 @default.
- W3204334872 cites W2795714960 @default.
- W3204334872 cites W2888916943 @default.
- W3204334872 cites W2901491420 @default.
- W3204334872 cites W2904391595 @default.
- W3204334872 cites W2911964244 @default.
- W3204334872 cites W2915231377 @default.
- W3204334872 cites W2919424886 @default.
- W3204334872 cites W2939196443 @default.
- W3204334872 cites W3024727387 @default.
- W3204334872 cites W3026092945 @default.
- W3204334872 cites W3034933863 @default.
- W3204334872 cites W3037707481 @default.
- W3204334872 cites W3037726600 @default.
- W3204334872 cites W3047924345 @default.
- W3204334872 cites W3120425288 @default.
- W3204334872 cites W3200825310 @default.
- W3204334872 doi "https://doi.org/10.3390/rs13193885" @default.
- W3204334872 hasPublicationYear "2021" @default.
- W3204334872 type Work @default.
- W3204334872 sameAs 3204334872 @default.
- W3204334872 citedByCount "8" @default.
- W3204334872 countsByYear W32043348722022 @default.
- W3204334872 countsByYear W32043348722023 @default.
- W3204334872 crossrefType "journal-article" @default.
- W3204334872 hasAuthorship W3204334872A5022234965 @default.
- W3204334872 hasAuthorship W3204334872A5026629570 @default.
- W3204334872 hasAuthorship W3204334872A5028821253 @default.
- W3204334872 hasAuthorship W3204334872A5037967253 @default.
- W3204334872 hasAuthorship W3204334872A5052370068 @default.
- W3204334872 hasAuthorship W3204334872A5067870373 @default.
- W3204334872 hasAuthorship W3204334872A5083560587 @default.
- W3204334872 hasBestOaLocation W32043348721 @default.
- W3204334872 hasConcept C105795698 @default.
- W3204334872 hasConcept C107054158 @default.
- W3204334872 hasConcept C127313418 @default.
- W3204334872 hasConcept C127413603 @default.
- W3204334872 hasConcept C138885662 @default.
- W3204334872 hasConcept C139945424 @default.
- W3204334872 hasConcept C146978453 @default.
- W3204334872 hasConcept C153294291 @default.
- W3204334872 hasConcept C154945302 @default.
- W3204334872 hasConcept C158525013 @default.
- W3204334872 hasConcept C19269812 @default.
- W3204334872 hasConcept C205372480 @default.
- W3204334872 hasConcept C205649164 @default.
- W3204334872 hasConcept C33923547 @default.
- W3204334872 hasConcept C33954974 @default.
- W3204334872 hasConcept C39432304 @default.
- W3204334872 hasConcept C41008148 @default.
- W3204334872 hasConcept C41156917 @default.
- W3204334872 hasConcept C41895202 @default.
- W3204334872 hasConcept C62649853 @default.