Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204338204> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W3204338204 abstract "Proper dynamic network extraction is a prominent problem for timely evolving systems' modelling. This problem is seen as finding the most proper window size for extracting the most informative and least noisy time series of snapshot features. Existing solutions suffer from using only network topological properties as snapshot features, applying subjective methodologies needed user-dependent data labeling, and extracting snapshots with equal sized windows. We propose a window aggregation strategy of intelligent snapshot extraction to overcome previous issues. The idea is to collect the snapshots that already have similar link structure. Thus, the result network has fewer snapshots with different duration. Experiments on Enron and Haggle Infocomm data sets reveal that our proposal extracts more informative snapshots than using constant window sizes. Moreover, as a complementary result, it is more effective in determining proper time interval for modelling." @default.
- W3204338204 created "2021-10-11" @default.
- W3204338204 creator A5005002642 @default.
- W3204338204 creator A5040564534 @default.
- W3204338204 date "2021-08-25" @default.
- W3204338204 modified "2023-09-27" @default.
- W3204338204 title "Aggregating Time Windows for Dynamic Network Extraction" @default.
- W3204338204 cites W1623665690 @default.
- W3204338204 cites W2012396636 @default.
- W3204338204 cites W2102964156 @default.
- W3204338204 cites W2148606196 @default.
- W3204338204 cites W2169353679 @default.
- W3204338204 cites W2336153184 @default.
- W3204338204 cites W2336214964 @default.
- W3204338204 cites W2725191915 @default.
- W3204338204 cites W2763718023 @default.
- W3204338204 cites W2884041582 @default.
- W3204338204 cites W2897700198 @default.
- W3204338204 cites W3037819556 @default.
- W3204338204 cites W3100227875 @default.
- W3204338204 cites W3151829452 @default.
- W3204338204 doi "https://doi.org/10.1109/inista52262.2021.9548480" @default.
- W3204338204 hasPublicationYear "2021" @default.
- W3204338204 type Work @default.
- W3204338204 sameAs 3204338204 @default.
- W3204338204 citedByCount "1" @default.
- W3204338204 countsByYear W32043382042022 @default.
- W3204338204 crossrefType "proceedings-article" @default.
- W3204338204 hasAuthorship W3204338204A5005002642 @default.
- W3204338204 hasAuthorship W3204338204A5040564534 @default.
- W3204338204 hasConcept C124101348 @default.
- W3204338204 hasConcept C154945302 @default.
- W3204338204 hasConcept C41008148 @default.
- W3204338204 hasConcept C52622490 @default.
- W3204338204 hasConcept C55282118 @default.
- W3204338204 hasConcept C77088390 @default.
- W3204338204 hasConceptScore W3204338204C124101348 @default.
- W3204338204 hasConceptScore W3204338204C154945302 @default.
- W3204338204 hasConceptScore W3204338204C41008148 @default.
- W3204338204 hasConceptScore W3204338204C52622490 @default.
- W3204338204 hasConceptScore W3204338204C55282118 @default.
- W3204338204 hasConceptScore W3204338204C77088390 @default.
- W3204338204 hasLocation W32043382041 @default.
- W3204338204 hasOpenAccess W3204338204 @default.
- W3204338204 hasPrimaryLocation W32043382041 @default.
- W3204338204 hasRelatedWork W2000165426 @default.
- W3204338204 hasRelatedWork W2019424700 @default.
- W3204338204 hasRelatedWork W2114557664 @default.
- W3204338204 hasRelatedWork W2156017660 @default.
- W3204338204 hasRelatedWork W2347219288 @default.
- W3204338204 hasRelatedWork W2366221835 @default.
- W3204338204 hasRelatedWork W2550539038 @default.
- W3204338204 hasRelatedWork W3015928229 @default.
- W3204338204 hasRelatedWork W4210656569 @default.
- W3204338204 hasRelatedWork W4317807332 @default.
- W3204338204 isParatext "false" @default.
- W3204338204 isRetracted "false" @default.
- W3204338204 magId "3204338204" @default.
- W3204338204 workType "article" @default.