Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204343880> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3204343880 endingPage "122123" @default.
- W3204343880 startingPage "122123" @default.
- W3204343880 abstract "Aiming at promoting the intelligent development of control technology for new energy vehicles and showing the outstanding advantages of deep reinforcement learning (DRL), this paper trained a VGG16-based road recognition convolutional neural network (CNN) at first. Lots of high-definition images of five typical roads are collected by the racing game Dust Rally 2.0, including dry asphalt, wet asphalt, snow, dry cobblestone, and wet cobblestone. Then, a time-varying driving environment model was established, involving driving images, road slope, longitudinal speed, and the number of passengers. Finally, a stereoscopic control network suitable for nine-dimensional state space and three-dimensional action space was built, and for parallel hybrid electric vehicles (HEVs) with the P3 structure, a deep q-network (DQN)-based energy management strategy (EMS) achieving multi-objective control was proposed, including the fine-tuning strategy of the motor speed to maintain the optimal slip rate during braking, the engine power control strategy and the continuously variable transmission (CVT) gear ratio control strategy. Simulation results show under the influence of some factors such as tree shade and image compression, the road recognition network has the highest accuracy for snow roads and wet asphalt roads. Three types of control strategies learned simultaneously by the stereoscopic control network not only maintain the near-optimal slip rate in the braking period but also achieve a fuel consumption of 4788.93 g, while dynamic programming (DP)-based EMS gets a fuel consumption of 4295.61 g. Moreover, even DP-based EMS only contains three states and two actions, the time consumed for DP-based EMS and DQN-based EMS to run the speed cycle of 3602s is about 4911s and 10s, respectively. Therefore, the optimization and real-time performance of DRL-based EMS can be guaranteed." @default.
- W3204343880 created "2021-10-11" @default.
- W3204343880 creator A5027096256 @default.
- W3204343880 creator A5058738211 @default.
- W3204343880 creator A5061671556 @default.
- W3204343880 creator A5069582932 @default.
- W3204343880 creator A5077232157 @default.
- W3204343880 date "2022-01-01" @default.
- W3204343880 modified "2023-10-11" @default.
- W3204343880 title "Deep reinforcement learning-based multi-objective control of hybrid power system combined with road recognition under time-varying environment" @default.
- W3204343880 cites W2145339207 @default.
- W3204343880 cites W2236204240 @default.
- W3204343880 cites W2257979135 @default.
- W3204343880 cites W2515618497 @default.
- W3204343880 cites W2618149076 @default.
- W3204343880 cites W2618530766 @default.
- W3204343880 cites W2904025397 @default.
- W3204343880 cites W2912140438 @default.
- W3204343880 cites W2920406591 @default.
- W3204343880 cites W2923119547 @default.
- W3204343880 cites W2936616423 @default.
- W3204343880 cites W2945493933 @default.
- W3204343880 cites W2953491274 @default.
- W3204343880 cites W2970566041 @default.
- W3204343880 cites W2974180968 @default.
- W3204343880 cites W2989891288 @default.
- W3204343880 cites W2990975667 @default.
- W3204343880 cites W2994209110 @default.
- W3204343880 cites W3004886093 @default.
- W3204343880 cites W3009193590 @default.
- W3204343880 cites W3019345598 @default.
- W3204343880 cites W3034744822 @default.
- W3204343880 cites W3088650053 @default.
- W3204343880 cites W3157190188 @default.
- W3204343880 cites W3164233963 @default.
- W3204343880 cites W3196143163 @default.
- W3204343880 cites W3197248161 @default.
- W3204343880 cites W3197437737 @default.
- W3204343880 doi "https://doi.org/10.1016/j.energy.2021.122123" @default.
- W3204343880 hasPublicationYear "2022" @default.
- W3204343880 type Work @default.
- W3204343880 sameAs 3204343880 @default.
- W3204343880 citedByCount "13" @default.
- W3204343880 countsByYear W32043438802022 @default.
- W3204343880 countsByYear W32043438802023 @default.
- W3204343880 crossrefType "journal-article" @default.
- W3204343880 hasAuthorship W3204343880A5027096256 @default.
- W3204343880 hasAuthorship W3204343880A5058738211 @default.
- W3204343880 hasAuthorship W3204343880A5061671556 @default.
- W3204343880 hasAuthorship W3204343880A5069582932 @default.
- W3204343880 hasAuthorship W3204343880A5077232157 @default.
- W3204343880 hasConcept C108583219 @default.
- W3204343880 hasConcept C119599485 @default.
- W3204343880 hasConcept C127413603 @default.
- W3204343880 hasConcept C154945302 @default.
- W3204343880 hasConcept C171146098 @default.
- W3204343880 hasConcept C2780165032 @default.
- W3204343880 hasConcept C41008148 @default.
- W3204343880 hasConcept C44154836 @default.
- W3204343880 hasConcept C45882903 @default.
- W3204343880 hasConcept C50644808 @default.
- W3204343880 hasConcept C81363708 @default.
- W3204343880 hasConcept C97541855 @default.
- W3204343880 hasConceptScore W3204343880C108583219 @default.
- W3204343880 hasConceptScore W3204343880C119599485 @default.
- W3204343880 hasConceptScore W3204343880C127413603 @default.
- W3204343880 hasConceptScore W3204343880C154945302 @default.
- W3204343880 hasConceptScore W3204343880C171146098 @default.
- W3204343880 hasConceptScore W3204343880C2780165032 @default.
- W3204343880 hasConceptScore W3204343880C41008148 @default.
- W3204343880 hasConceptScore W3204343880C44154836 @default.
- W3204343880 hasConceptScore W3204343880C45882903 @default.
- W3204343880 hasConceptScore W3204343880C50644808 @default.
- W3204343880 hasConceptScore W3204343880C81363708 @default.
- W3204343880 hasConceptScore W3204343880C97541855 @default.
- W3204343880 hasFunder F4320321001 @default.
- W3204343880 hasFunder F4320323172 @default.
- W3204343880 hasFunder F4320326870 @default.
- W3204343880 hasFunder F4320327024 @default.
- W3204343880 hasFunder F4320335787 @default.
- W3204343880 hasLocation W32043438801 @default.
- W3204343880 hasOpenAccess W3204343880 @default.
- W3204343880 hasPrimaryLocation W32043438801 @default.
- W3204343880 hasRelatedWork W2731899572 @default.
- W3204343880 hasRelatedWork W2999805992 @default.
- W3204343880 hasRelatedWork W3011074480 @default.
- W3204343880 hasRelatedWork W3116150086 @default.
- W3204343880 hasRelatedWork W3133861977 @default.
- W3204343880 hasRelatedWork W3192840557 @default.
- W3204343880 hasRelatedWork W4200173597 @default.
- W3204343880 hasRelatedWork W4291897433 @default.
- W3204343880 hasRelatedWork W4312417841 @default.
- W3204343880 hasRelatedWork W4321369474 @default.
- W3204343880 hasVolume "239" @default.
- W3204343880 isParatext "false" @default.
- W3204343880 isRetracted "false" @default.
- W3204343880 magId "3204343880" @default.
- W3204343880 workType "article" @default.