Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204346415> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W3204346415 abstract "We prove that any set of points in $mathbb{R}^d$, any three of which form an angle less than $frac{pi}{3} + c$, has size $(1+Theta(c))^d$ for sufficiently small $c>0$. The proof is based on a refinement of an approach by ErdH{o}s and F{u}redi. The lower bound is relying on a problem about large hypegraphs with small edge intersections, while the upper bound is tightly connected to the problem of packing disjoint caps on a sphere." @default.
- W3204346415 created "2021-10-11" @default.
- W3204346415 creator A5013061557 @default.
- W3204346415 date "2021-10-05" @default.
- W3204346415 modified "2023-09-27" @default.
- W3204346415 title "Exponentially sized pointsets with angles less than 61 degrees" @default.
- W3204346415 cites W1595327909 @default.
- W3204346415 cites W163439890 @default.
- W3204346415 cites W2105635932 @default.
- W3204346415 cites W2962915530 @default.
- W3204346415 hasPublicationYear "2021" @default.
- W3204346415 type Work @default.
- W3204346415 sameAs 3204346415 @default.
- W3204346415 citedByCount "0" @default.
- W3204346415 crossrefType "posted-content" @default.
- W3204346415 hasAuthorship W3204346415A5013061557 @default.
- W3204346415 hasConcept C114614502 @default.
- W3204346415 hasConcept C121332964 @default.
- W3204346415 hasConcept C134306372 @default.
- W3204346415 hasConcept C162307627 @default.
- W3204346415 hasConcept C177264268 @default.
- W3204346415 hasConcept C199360897 @default.
- W3204346415 hasConcept C2524010 @default.
- W3204346415 hasConcept C33923547 @default.
- W3204346415 hasConcept C41008148 @default.
- W3204346415 hasConcept C45340560 @default.
- W3204346415 hasConcept C76155785 @default.
- W3204346415 hasConcept C77553402 @default.
- W3204346415 hasConceptScore W3204346415C114614502 @default.
- W3204346415 hasConceptScore W3204346415C121332964 @default.
- W3204346415 hasConceptScore W3204346415C134306372 @default.
- W3204346415 hasConceptScore W3204346415C162307627 @default.
- W3204346415 hasConceptScore W3204346415C177264268 @default.
- W3204346415 hasConceptScore W3204346415C199360897 @default.
- W3204346415 hasConceptScore W3204346415C2524010 @default.
- W3204346415 hasConceptScore W3204346415C33923547 @default.
- W3204346415 hasConceptScore W3204346415C41008148 @default.
- W3204346415 hasConceptScore W3204346415C45340560 @default.
- W3204346415 hasConceptScore W3204346415C76155785 @default.
- W3204346415 hasConceptScore W3204346415C77553402 @default.
- W3204346415 hasLocation W32043464151 @default.
- W3204346415 hasOpenAccess W3204346415 @default.
- W3204346415 hasPrimaryLocation W32043464151 @default.
- W3204346415 hasRelatedWork W1487855796 @default.
- W3204346415 hasRelatedWork W1519765522 @default.
- W3204346415 hasRelatedWork W1729223836 @default.
- W3204346415 hasRelatedWork W1759411922 @default.
- W3204346415 hasRelatedWork W2018858611 @default.
- W3204346415 hasRelatedWork W2050230854 @default.
- W3204346415 hasRelatedWork W2057690024 @default.
- W3204346415 hasRelatedWork W2085954234 @default.
- W3204346415 hasRelatedWork W2146388713 @default.
- W3204346415 hasRelatedWork W2414232284 @default.
- W3204346415 hasRelatedWork W2577413767 @default.
- W3204346415 hasRelatedWork W2582682870 @default.
- W3204346415 hasRelatedWork W2596764499 @default.
- W3204346415 hasRelatedWork W2894201510 @default.
- W3204346415 hasRelatedWork W2950195406 @default.
- W3204346415 hasRelatedWork W2950330962 @default.
- W3204346415 hasRelatedWork W2952380357 @default.
- W3204346415 hasRelatedWork W2985417056 @default.
- W3204346415 hasRelatedWork W3196451032 @default.
- W3204346415 hasRelatedWork W3196968457 @default.
- W3204346415 isParatext "false" @default.
- W3204346415 isRetracted "false" @default.
- W3204346415 magId "3204346415" @default.
- W3204346415 workType "article" @default.