Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204355283> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3204355283 endingPage "352" @default.
- W3204355283 startingPage "341" @default.
- W3204355283 abstract "Quantitative research on aesthetics is a classic interdisciplinary research. With the rapid development of deep learning, various approaches have been made in image aesthetics assessment (IAA). Starting from the concept of image aesthetics, this report roughly follows the chronological sequence and first introduces the manual design of image aesthetic features. We divide IAA into generic image aesthetics assessment (GIAA) and personalized image aesthetics assessment (PIAA) to introduce separately in the deep learning part. Majority of approaches are GIAA, which purpose is to simulate general aesthetics. In this section, we separately reviewed representative studies of five assessment methods (aesthetic classification, aesthetic regression, aesthetic distribution, IAA with attributes, aesthetic description). Due to the subjectivity of aesthetics, human’s aesthetics will more or less deviate from the generic value. PIAA aims to model the aesthetic preferences of specific user, and the research is of great value. We introduced this novel research in the fifth section. Finally, image aesthetic datasets of different uses are summarized. We hope this comprehensive survey can be helpful to researchers in the field of image and enhance the connection between computer and art." @default.
- W3204355283 created "2021-10-11" @default.
- W3204355283 creator A5009842584 @default.
- W3204355283 creator A5078021087 @default.
- W3204355283 creator A5086306875 @default.
- W3204355283 date "2021-01-01" @default.
- W3204355283 modified "2023-09-24" @default.
- W3204355283 title "Technological Development of Image Aesthetics Assessment" @default.
- W3204355283 cites W1511924373 @default.
- W3204355283 cites W1532550279 @default.
- W3204355283 cites W1994739392 @default.
- W3204355283 cites W2007773296 @default.
- W3204355283 cites W2009678853 @default.
- W3204355283 cites W2023268395 @default.
- W3204355283 cites W2048835603 @default.
- W3204355283 cites W2063948594 @default.
- W3204355283 cites W2078807908 @default.
- W3204355283 cites W2080754665 @default.
- W3204355283 cites W2093351294 @default.
- W3204355283 cites W2128899830 @default.
- W3204355283 cites W2217895792 @default.
- W3204355283 cites W2417288846 @default.
- W3204355283 cites W2422471819 @default.
- W3204355283 cites W244014878 @default.
- W3204355283 cites W2467531333 @default.
- W3204355283 cites W2506483933 @default.
- W3204355283 cites W2514622527 @default.
- W3204355283 cites W2604528050 @default.
- W3204355283 cites W276248854 @default.
- W3204355283 cites W2779483295 @default.
- W3204355283 cites W2896399498 @default.
- W3204355283 cites W2897926040 @default.
- W3204355283 cites W2898960356 @default.
- W3204355283 cites W2964084596 @default.
- W3204355283 cites W2970253846 @default.
- W3204355283 cites W2981671251 @default.
- W3204355283 cites W2988824574 @default.
- W3204355283 cites W2998655204 @default.
- W3204355283 cites W3003957020 @default.
- W3204355283 cites W3011681628 @default.
- W3204355283 cites W3100145537 @default.
- W3204355283 cites W3100404621 @default.
- W3204355283 cites W3103635814 @default.
- W3204355283 cites W4220869772 @default.
- W3204355283 cites W4236941566 @default.
- W3204355283 doi "https://doi.org/10.1007/978-3-030-87361-5_28" @default.
- W3204355283 hasPublicationYear "2021" @default.
- W3204355283 type Work @default.
- W3204355283 sameAs 3204355283 @default.
- W3204355283 citedByCount "0" @default.
- W3204355283 crossrefType "book-chapter" @default.
- W3204355283 hasAuthorship W3204355283A5009842584 @default.
- W3204355283 hasAuthorship W3204355283A5078021087 @default.
- W3204355283 hasAuthorship W3204355283A5086306875 @default.
- W3204355283 hasConcept C107038049 @default.
- W3204355283 hasConcept C142362112 @default.
- W3204355283 hasConceptScore W3204355283C107038049 @default.
- W3204355283 hasConceptScore W3204355283C142362112 @default.
- W3204355283 hasLocation W32043552831 @default.
- W3204355283 hasOpenAccess W3204355283 @default.
- W3204355283 hasPrimaryLocation W32043552831 @default.
- W3204355283 hasRelatedWork W1531601525 @default.
- W3204355283 hasRelatedWork W1985821297 @default.
- W3204355283 hasRelatedWork W2174196969 @default.
- W3204355283 hasRelatedWork W2748952813 @default.
- W3204355283 hasRelatedWork W2758277628 @default.
- W3204355283 hasRelatedWork W2899084033 @default.
- W3204355283 hasRelatedWork W2935909890 @default.
- W3204355283 hasRelatedWork W2948807893 @default.
- W3204355283 hasRelatedWork W4232183619 @default.
- W3204355283 hasRelatedWork W2778153218 @default.
- W3204355283 isParatext "false" @default.
- W3204355283 isRetracted "false" @default.
- W3204355283 magId "3204355283" @default.
- W3204355283 workType "book-chapter" @default.